人教高中數(shù)學選修2-1、2-2、2-3課后習題習題與講解_第1頁
人教高中數(shù)學選修2-1、2-2、2-3課后習題習題與講解_第2頁
人教高中數(shù)學選修2-1、2-2、2-3課后習題習題與講解_第3頁
人教高中數(shù)學選修2-1、2-2、2-3課后習題習題與講解_第4頁
人教高中數(shù)學選修2-1、2-2、2-3課后習題習題與講解_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新課程標準數(shù)學選修2—2第一章課后習題解答第一章導數(shù)及其應用3.1變化率與導數(shù)練習(P6)在第3h和5h時,原油溫度的瞬時變化率分別為和3.它說明在第3h附近,原油溫度大約以1℃/h的速度下降;在第5h時,原油溫度大約以3℃/h的速率上升.練習(P8)函數(shù)在附近單調遞增,在附近單調遞增.并且,函數(shù)在附近比在附近增加得慢.說明:體會“以直代曲”1的思想.練習(P9)函數(shù)的圖象為根據(jù)圖象,估算出,.說明:如果沒有信息技術,教師可以將此圖直接提供給學生,然后讓學生根據(jù)導數(shù)的幾何意義估算兩點處的導數(shù).習題A組(P10)1、在處,雖然,然而.所以,企業(yè)甲比企業(yè)乙治理的效率高.說明:平均變化率的應用,體會平均變化率的內涵.2、,所以,.這說明運動員在s附近以m/s的速度下降.3、物體在第5s的瞬時速度就是函數(shù)在時的導數(shù).,所以,.因此,物體在第5s時的瞬時速度為10m/s,它在第5s的動能J.4、設車輪轉動的角度為,時間為,則.由題意可知,當時,.所以,于是.車輪轉動開始后第s時的瞬時角速度就是函數(shù)在時的導數(shù).,所以.因此,車輪在開始轉動后第s時的瞬時角速度為.說明:第2,3,4題是對了解導數(shù)定義及熟悉其符號表示的鞏固.5、由圖可知,函數(shù)在處切線的斜率大于零,所以函數(shù)在附近單調遞增.同理可得,函數(shù)在,,0,2附近分別單調遞增,幾乎沒有變化,單調遞減,單調遞減.說明:“以直代曲”思想的應用.6、第一個函數(shù)的圖象是一條直線,其斜率是一個小于象如圖(1)所示;第二個函數(shù)的導數(shù)恒大于零,并且隨著的增加,的值也在增加;對于第三個函數(shù),當小于零時,小于零,當大于零時,大于零,并且隨著的增加,的值也在增加.以下給出了滿足上述條件的導函數(shù)圖象中的一種.零的常數(shù),因此,其導數(shù)的圖說明:本題意在讓學生將導數(shù)與曲線的切線斜率相聯(lián)系.習題B組(P11)1、高度關于時間的導數(shù)刻畫的是運動變化的快慢,即速度;速度關于時間的導數(shù)刻畫的是速度變化的快慢,根據(jù)物理知識,這個量就是加速度.2、說明:由給出的的信息獲得的相關信息,并據(jù)此畫出的圖象的大致形狀.這個過程基于對導數(shù)內涵的了解,以及數(shù)與形之間的相互轉換.3、由(1)的題意可知,函數(shù)的圖象在點處的切線斜率為,所以此點附近曲線呈下降趨勢.首先畫出切線的圖象,然后再畫出此點附近函數(shù)的圖象.同理可得(2)(3)某點處函數(shù)圖象的大致形狀.下面是一種參考答案.說明:這是一個綜合性問題,包含了對導數(shù)內涵、導數(shù)幾何意義的了解,以及對以直代曲思想的領悟.本題的答案不唯一.1.2導數(shù)的計算練習(P18)1、,所以,,.2、(1);(2);(3);(4);(5);(6).習題A組(P18)1、,所以,.2、.3、.4、(1);(2);(3);(4);(5);(6).5、.由有,解得.6、(1);(2).7、.8、(1)氨氣的散發(fā)速度.(2),它表示氨氣在第7天左右時,以克/天的速率減少.習題B組(P19)1、(1)(2)當越來越小時,就越來越逼近函數(shù).(3)的導數(shù)為.2、當時,.所以函數(shù)圖象與軸交于點.,所以.所以,曲線在點處的切線的方程為.2、.所以,上午6:00時潮水的速度為m/h;上午9:00時潮水的速度為m/h;中午12:00時潮水的速度為m/h;下午6:00時潮水的速度為m/h.1.3導數(shù)在研究函數(shù)中的應用練習(P26)1、(1)因為,所以.當,即時,函數(shù)單調遞增;當,即時,函數(shù)單調遞減.(2)因為,所以.當,即時,函數(shù)單調遞增;當,即時,函數(shù)單調遞減.(3)因為,所以.當,即時,函數(shù)單調遞增;當,即或時,函數(shù)單調遞減.(4)因為,所以.當,即或時,函數(shù)單調遞增;當,即時,函數(shù)單調遞減.2、3、因為,所以.(1)當時,注:圖象形狀不唯一.,即時,函數(shù)單調遞增;,即時,函數(shù)單調遞減.(2)當時,,即時,函數(shù)單調遞增;,即時,函數(shù)單調遞減.4、證明:因為,所以.當時,,因此函數(shù)在內是減函數(shù).練習(P29)1、是函數(shù)的極值點,其中是函數(shù)的極大值點,是函數(shù)的極小值點.2、(1)因為,所以.令,得.當時,,單調遞增;當時,,單調遞減.所以,當時,有極小值,并且極小值為.(2)因為,所以.令,得.下面分兩種情況討論:①當,即或時;②當,即時.當變化時,,變化情況如下表:30+0-+單調遞增54單調遞減因此,當時,有極大值,并且極大值為54;單調遞增當時,有極小值,并且極小值為.(3)因為,所以.令,得.下面分兩種情況討論:①當,即時;②當,即或時.當變化時,,變化情況如下表:2+0-0-單調遞減單調遞增22單調遞減因此,當時,有極小值,并且極小值為;當時,有極大值,并且極大值為22(4)因為,所以.令,得.下面分兩種情況討論:①當,即時;②當,即或時.當變化時,,變化情況如下表:1-0+0-單調遞減單調遞增2單調遞減因此,當時,有極小值,并且極小值為;當時,有極大值,并且極大值為2練習(P31)(1)在上,當時,有極小值,并且極小值為.又由于,.因此,函數(shù)在上的最大值是20、最小值是.(2)在上,當時,有極大值,并且極大值為;當時,有極小值,并且極小值為;又由于,.因此,函數(shù)在上的最大值是54、最小值是.(3)在上,當時,有極大值,并且極大值為.又由于,.因此,函數(shù)在上的最大值是22、最小值是.(4)在上,函數(shù)無極值.因為,.因此,函數(shù)在上的最大值是、最小值是.習題A組(P31)1、(1)因為,所以.因此,函數(shù)是單調遞減函數(shù).(2)因為,,所以,.因此,函數(shù)在上是單調遞增函數(shù).(3)因為,所以.因此,函數(shù)是單調遞減函數(shù).(4)因為,所以.因此,函數(shù)是單調遞增函數(shù).2、(1)因為,所以.當,即時,函數(shù)單調遞增.當,即時,函數(shù)單調遞減.(2)因為,所以.當,即時,函數(shù)單調遞增.當,即時,函數(shù)單調遞減.(3)因為,所以.因此,函數(shù)是單調遞增函數(shù).(4)因為,所以.當,即或時,函數(shù)單調遞增.當,即時,函數(shù)單調遞減.3、(1)圖略.(2)加速度等于0.4、(1)在處,導函數(shù)有極大值;(2)在和處,導函數(shù)有極小值;(3)在處,函數(shù)有極大值;(4)在處,函數(shù)有極小值.5、(1)因為,所以.令,得.當時,,單調遞增;當時,,單調遞減.所以,時,有極小值,并且極小值為.(2)因為,所以.令,得.下面分兩種情況討論:①當,即或時;②當,即時.當變化時,,變化情況如下表:20+0-+單調遞增16單調遞減單調遞增因此,當時,有極大值,并且極大值為16;當時,有極小值,并且極小值為.(3)因為,所以.令,得.下面分兩種情況討論:①當,即或時;②當,即時.當變化時,,變化情況如下表:2+0-0+單調遞增22單調遞減單調遞增因此,當時,有極大值,并且極大值為22;當時,有極小值,并且極小值為.(4)因為,所以.令,得.下面分兩種情況討論:①當,即或時;②當,即時.當變化時,,變化情況如下表:40-0+-單調遞減單調遞增128單調遞減因此,當時,有極小值,并且極小值為;當時,有極大值,并且極大值為128.6、(1)在上,當時,函數(shù)有極小值,并且極小值為.由于,,所以,函數(shù)在上的最大值和最小值分別為9,.(2)在上,當時,函數(shù)有極大值,并且極大值為16;當時,函數(shù)有極小值,并且極小值為.由于,,所以,函數(shù)在上的最大值和最小值分別為16,.(3)在上,函數(shù)在上無極值.由于,,所以,函數(shù)在上的最大值和最小值分別為,.(4)當時,有極大值,并且極大值為128..由于,,所以,函數(shù)在上的最大值和最小值分別為128,.習題B組(P32)1、(1)證明:設,.因為,所以在內單調遞減因此,,即,.圖略(2)證明:設,.因為,所以,當時,,單調遞增,;當時,,單調遞減,;又.因此,,.圖略(3)證明:設,.因為,所以,當時,,單調遞增,;當時,,單調遞減,;綜上,,.圖略(4)證明:設,.因為,所以,當時,,單調遞增,;當時,,單調遞減,;當時,顯然.因此,.由(3)可知,,..綜上,,圖略2、(1)函數(shù)的圖象大致是個“雙峰”圖象,類似“”或“”的形狀.若有極值,則在整個定義域上有且僅有一個極大值和一個極小值,從圖象上能大致估計它的單調區(qū)間.(2)因為,所以.下面分類討論:當時,分和兩種情形:①當,且時,設方程的兩根分別為,且,當,即或時,函數(shù)單調遞增;當,即時,函數(shù)單調遞減.當,且時,此時,函數(shù)單調遞增.②當,且時,設方程的兩根分別為,且,當,即時,函數(shù)單調遞增;當,即或時,函數(shù)單調遞減.當,且時,此時,函數(shù)單調遞減1.4生活中的習題A組(優(yōu)化問題舉例P37)1、設兩段鐵絲的長度分別為,,則這兩個正方形的邊長分別為,,兩個正方形的面積和為,.即,.;當時,.令,當時,因此,是函數(shù)的極小值點,也是最小值點.所以,當兩段鐵絲的長度分別是時,兩個正方形的面積和最小.2、如圖所示,由于在邊長為的正方形鐵片的四角截去四個邊長為的小正方形,做成一個無蓋方盒,所以無蓋方盒的底面為正方形,且邊長為,高為.(1)無蓋方盒的(2)因為,所以.容積,.令,得(舍去),或.當時,;當時,.因此,是函數(shù)的極大值點,也是最大值點.所以,當時,無蓋方盒的容積最大.3、如圖,設圓柱的高為,底半徑為,(第2題)則表面積由,得.因此,,.令,解得.當時,;當時,.因此,是函數(shù)的極小值點,也是最小值點.此時,.所以,當罐高與底面直徑相等時,所用材料最省.

4、證明:由于,所以.令,得,可以得到,是函數(shù)的極小值點,也是最小值點.這個結果說明,用個數(shù)據(jù)的平均值表示這個物體的長度是合理的,這就是最小二乘法的基本原理.5、設矩形的底寬為m,則半圓的半徑為m,半圓的面積為,矩形的面積為,矩形的另一邊長為m因此鐵絲的長為,令,得(負值舍去).當時,;當時,.因此,是函數(shù)的極小值點,也是最小值點.所以,當?shù)讓挒閙時,所用材料最省.6、利潤等于收入減去成本,而收入等于產(chǎn)量乘單價.由此可得出利潤與產(chǎn)量的函數(shù)關系式,再用導數(shù)求最大利潤.收入,利潤,.求導得令,即,.;;當時,當時,因此,是函數(shù)的極大值點,也是最大值點.所以,產(chǎn)量為84時,利潤最大,習題B組(P37)1、設每個房間每天的定價為元,那么賓館利潤,.令,解得.當時,;當時,.因此,是函數(shù)的極大值點,也是最大值點.所以,當每個房間每天的定價為350元時,賓館利潤最大.2、設銷售價為元/件時,利潤,.令,解得.當時,;當時,.當是函數(shù)的極大值點,也是最大值點.所以,銷售價為元/件時,可獲得最大利潤.1.5定積分的概念練習(P42).說明:進一步熟悉求曲邊梯形面積的方法和步驟,體會“以直代曲”和“逼近”的思想.練習(P45)1、,.于是取極值,得說明:進一步體會“以不變代變”和“逼近”的思想.2、km.說明:進一步體會“以不變代變”和“逼近”的思想,熟悉求變速直線運動物體路程的方法和步驟.練習(P48).說明:進一步熟悉定積分的定義和幾何意義.從幾何上看,表示由曲線與直線,,所圍成的曲邊梯形的面積.習題A組(P50)1、(1);(2);(3).說明:體會通過分割、近似替換、求和得到定積分的近似值的方法.2、距離的不足近似值為:(m);距離的過剩近似值為:(m).3、證明:令.用分點將區(qū)間等分成個小區(qū)間,在每個小區(qū)間上任取一點作和式,從而,說明:進一步熟悉定積分的概念.4、根據(jù)定積分的幾何意義,表示由直線,,四分之一單位圓的面積,因此.5、(1).以及曲線所圍成的曲邊梯形的面積,即由于在區(qū)間上,所以定積分表示由直線,,和曲線所圍成的曲邊梯形的面積的相反數(shù).(2)根據(jù)定積分的性質,得.由于在區(qū)間上,在區(qū)間上,所以定積分等于位于軸上方的曲邊梯形面積減去位于軸下方的曲邊梯形面積.(3)根據(jù)定積分的性質,得由于在區(qū)間上,在區(qū)間上,所以定積分等于位于軸上方的曲邊梯形面積減去位于軸下方的曲邊梯形面積.說明:在(3)中,把區(qū)間分成等份來求這個定積分,些項,求和會非常麻煩.用利性質3可以將定積分化為,再利用定積分的定義,容易求出,,進而得到定積分的值.由此可由于在區(qū)間上是非正的,在區(qū)間上是非負的,如果直接用利定義那么和式中既有正項又有負項,而且無法抵擋一這樣,在區(qū)間和區(qū)間上的符號都是不變的,見,利用定積分的性質可以化簡運算.在(2)(3)中,被積函數(shù)在積分區(qū)間上的函數(shù)值有正有負,通過練習進一步體會定積分的幾何意義.習題B組(P50)1、該物體在到(單位:s)之間走過的路程大約為145m.說明:根據(jù)定積分的幾何意義,通過估算曲邊梯形內包含單位正方形的個數(shù)來估計物體走過的路程.2、(1).(2)過剩近似值:(m);不足近似值:(m)(3);(m).3、(1)分割在區(qū)間上等間隔地插入個分點,將它分成個小區(qū)間:,,……,,記第個區(qū)間為(),其長度為.把細棒在小段,,……,上質量分別記作:,則細棒的質量.(2)近似代替當很大,即很小時,在小區(qū)間上,可以認為線密度的值變化很小,近似地等于一個常數(shù),不妨認為它近似地等于任意一點處的函數(shù)值.于是,細棒在小段上質量().(3)求和得細棒的質量.(4)取極限細棒的1.6微積分基本定理練習(P55)質量,所以..(1)50;((5);(6);(7)0;(8).性質計算定積分.2);(3);(4)24;說明:本題利用微積分基本定理和定積分的習題A組(P55)1、(1);(2);(3);(4);(5);(6).性質計算定積分.說明:本題利用微積分基本定理和定積分的2、.它表示位于軸上方的兩個曲邊梯形的面積與軸下方的曲邊梯形的面積之差.或表述為:位于軸上方的兩個曲邊梯形的面積(取正值)與軸下方的曲邊梯形的面積(取負值)的代數(shù)和.習題B組(P55)1、(1)原式=;(2)原式=;(3)原式=.2、(1);(2);(3);(4).3、(1).(2)由題意得.這是一個超越方程,為了這解個方程,我們首先估計的取值范圍.根據(jù)指數(shù)函數(shù)的性質,當時,,從而,因此,.因此,,所以,.從而,在解方程時,可以忽略不計.因此,.,解之得(s).說明:B組中的習題涉及到被積函數(shù)是簡單的復合函數(shù)的定積分,可視學生的具體情況選做,不要求掌握.1.7定積分的簡單應用練習(P58)(1);(2)1.說明:進一步熟悉應用定積分求平面圖形的面積的方法與求解過程.練習(P59)1、(m).2、(J).習題A組(P60)1、(1)2;(2).2、.3、令,即.解得.即第4s時物體達到最大高度.最大高度為(m).4、設s后兩物體相遇,則,解之得.即兩物體5s后相遇.此時,物體離出發(fā)地的距離為(m).5、由,得.解之得.所做的功為(J).6、(1)令,解之得.因此,火車經(jīng)過10s后完全停止.(2)(m).習題B組(P60)1、(1)表示圓與軸所圍成的上半圓的面積,因此(2)表示圓與直線所圍成的圖形(如圖所示)的面積,因此,.2、證明:建立如圖所示的平面直角坐標系,可設物拋線的方程為,則,所以.從而物拋線的方程為.于是,物拋線拱的面積.(第1(2)題)3、如圖所示.解方程組得曲線與曲線交點的橫坐標,.于是,所求的面積為.4、證明:.(第2題)第一章復習參考題A組(P65)1、(1)3;(2).2、(1);(2);(3);(4).3、.4、(1).因為紅茶的溫度在下降3℃附近時,紅茶溫度約以4℃/min的速度下降.圖略.5、因為,所以..(2)表明在當,即時,單調遞增;當,即時,單調遞減.6、因為,所以.當,即時,有最小值.由,得.又因為,所以.7、因為,所以.當,即,或時,函數(shù)可能有極值.由題意當時,函數(shù)有極大值,所以.由于+0-0+單調遞增極大值單調遞減極小值單調遞增所以,當時,函數(shù)有極大值.此時,,.8、設當點的坐標為時,的面積最小.因為直線過點,,所以直線的方程為,即.當時,,即點的坐標是.因此,的面積.令,即.當,或時,,不合題意舍去.由于20-+單調遞減極小值單調遞增所以,當,即直線的傾斜角為時,的面積最小,最小面積為2.9、.10、設底面一邊的長為m,另一邊的長為m.因為鋼條長為.所以,長方體容器的高為.容積為,則設容器的,.令,即.所以,(舍去),或.當時,;當時,.因此,是函數(shù)在的極大值點,也是最大值點.所以,當長方體容器的高為1m時,容器最大,最大容器為m3.11、設旅游團人數(shù)為時,旅行社費用為.令,即,.又,,.所以,是函數(shù)的最大值點.所以,當旅游團人數(shù)為150時,可使旅行社收費最多.12、設打印紙的長為cm時,因為打印紙的面積為,長為,所以寬為,打印面積可使其打印面積最大.,.令,即,(負值舍去),.是函數(shù)在內唯一極值點,且為極大值,從而是最大值點.所以,打印紙的長、寬分別約為,時,可使其打印面積最大.13、設每年養(yǎng)頭豬時,總利潤為元.則.令,即,.當時,;當時,.是函數(shù)在內唯一極值點,且為極大值點,從而是最大值點.所以,每年養(yǎng)300頭豬時,可使總利潤最大,最大總利潤為25000元.14、(1);(2);(3)1;(4)原式=;(5)原式=.15、略.說明:利用函數(shù)圖象的對稱性、定積分的幾何意義進行解釋.16、.17、由,得.解之得.所做的功為(J)第一章復習參考題B組(P66)1、(1).所以,細菌在與時的瞬時速度分別為0和.(2)當時,,所以細菌在增加;當時,,所以細菌在減少.2、設扇形的半徑為,中心角為弧度時,扇形的面積為.因為,,所以.,.令,即,,此時為2弧度.是函數(shù)在內唯一極值點,且是極大值點,從而是最大值點.所以,扇形的半徑為、中心角為2弧度時,扇形的面積最大.3、設圓的錐底面半徑為,高為,體積為,那么.因此,,.令,解得.容易知道,是函數(shù)的極大值點,也是最大值點.所以,當時,容積最大.把代入,得.由,得.所以,圓心角為時,容積最大.4、由于,所以.設船速為km/h時,總費用為,則,令,即,.容易知道,是函數(shù)的極小值點,也是最小值點.當時,(元/時)所以,船速約為24km/h時,總費用最少,此時每小時費用約為941元.5、設汽車以km/h行駛時,行車的總費用,令,解得(km/h).此時,(元)容易得到,是函數(shù)的極小值點,也是最小值點.因此,當時,行車總費用最少.所以,最經(jīng)濟的車速約為53km/h;如果不考慮其他費用,這次行車的總費用約是114元.6、原式=.7、解方程組得,直線與拋物線交點的橫坐標為,.拋物線與軸所圍圖形的面積.由題設得.又因為,所以.于是.說明:本題也可以由面積相等直接得到,由此求出的值.但計算較為煩瑣.新課程標準數(shù)學選修2—2第二章課后習題解答第二章推理與證明2.1合情推理與演繹推理練習(P77)1、由,猜想.2、相鄰兩行數(shù)之間的關系是:每一行首尾的數(shù)都是1,其他的數(shù)都等于上一行中與之相鄰的兩個數(shù)的和.3、設和分別是四面體和的體積,則.練習(P81)1、略.

2、因為通項公式為的數(shù)列,若,其中是非零常數(shù),則是等比數(shù)列;……大前提又因為,則,則;……………小前提所以,通項公式為的數(shù)列是等比數(shù)列.……結論3、由,得到的推理是錯誤的.因為這個推理的大前提是“在同一個三角形中,大邊對大角”,小前提是“”,而與不在同一個三角形中.習題A組(P83)1、.2、.3、當時,;當時,;當時,.4、(,且).5、(,且).6、如圖,作∥交于.因為兩組對邊分別平行的四邊形是平行四邊形,又因為∥,∥.所以四邊形是平行四邊形.因為平行四邊形的對邊相等.又因為四邊形是平行四邊形.所以.因為與同一條線段等長的兩條線段的長度相等,(第6題)又因為,,所以因為等腰三角形的兩底角是相等的.又因為△是等腰三角形,所以因為平行線的同位角相等又因為與是平行線和的同位角,所以因為等于同角的兩個角是相等的,又因為,,所以習題B組(P84)1、由,,,,,猜想.2、略.3、略.2.2直接證明與間接證明練習(P89)1、因為,所以,命題得證.2、要證,只需證,即證,即證,只需要,即證,這是顯然成立的.所以,命題得證.3、因為,又因為,從而,所以,命題成立.說明:進一步熟悉運用綜合法、分析法證明數(shù)學命題的思考過程與特點.練習(P91)1、假設不是銳角,則.因此.這與三角形的角內和等于180°矛盾.所以,假設不成立.從而,一定是銳角.2、假設,,成等差數(shù)列,則.所以,化簡得,從而,即,這是不可能的.所以,假設不成立.從而,,,不可能成等差數(shù)列.說明:進一步熟悉運用反證法證明數(shù)學命題的思考過程與特點.習題A組(P91)1、由于,因此方程至少有一個跟.假設方程不止一個根,則至少有兩個根,不妨設是它的兩個不同的根,則①②①-②得因為,所以,從而,這與已知條件矛盾,故假設不成立.2、因為展開得,即.①假設,則,即所以.因為,都是銳角,所以,從而,與已知矛盾.因此.①式變形得,即.又因為,所以.說明:本題也可以把綜合法和分析法綜合使用完成證明.3、因為,所以,從而.另一方面,要證,只要證即證,即證由可得,,于是命題得證.說明:本題可以單獨使用綜合法或分析法進行證明,但把綜合法和分析法結合使用進行證明的思路更清晰.4、因為的倒數(shù)成等差數(shù)列,所以.假設不成立,即,則是的最大內角,所以(在三角形中,大角對大邊),從而.這與矛盾.所以,假設不成立,因此,.習題B組(1、要證,由于,所以因為,所以只需要,即證由于為一個三角形的三條邊,所以上式成立.于是原命題成立已知條件得①P91)只需要,即證...2、由,②要證,只要證,只要證由①②,得,,所以,,于是命題得證.3、由得,即.……①要證即證即證化簡得,這就是①式.所以,命題成立.說明:用綜合法和分析法證明命題時,經(jīng)常需要把兩者結合起來使用.2.3數(shù)學歸納法練習(P95)1、先證明:首項是,公差是的等差數(shù)列的通項公式是.(1)當時,左邊=,右邊=,因此,左邊=右邊.所以,當時命題成立.(2)假設當時,命題成立,即.那么,.所以,當時,命題也成立.根據(jù)(1)和(2),可知命題對任何都成立.再證明:該數(shù)列的前項和的公式是.(1)當時,左邊=,右邊=,因此,左邊=右邊.所以,當時命題成立.(2)假設當時,命題成立,即.那么,所以,當時,命題也成立.根據(jù)(1)和(2),可知命題對任何都成立.2、略.習題A組(P96)1、(1)略.(2)證明:①當時,左邊=1,右邊=,因此,左邊=右邊.所以,當時,等式成立.②假設當時等式成立,即.那么,.所以,當時,等式也成立.根據(jù)①和②,可知等式對任何都成立.(3)略.2、,,.由此猜想:.下面我們用數(shù)學歸納法證明這個猜想.(1)當時,左邊=,右邊=,因此,左邊=右邊.所以,當時,猜想成立.(2)假設當時,猜想成立,即.那么,.所以,當時,猜想也成立.根據(jù)(1)和(2),可知猜想對任何都成立.習題B組(P96)1、略2、證明:(1)當時,左邊=,右邊=,因此,左邊=右邊.所以,當時,等式成立.(2)假設當時,等式成立,即.那么,.所以,當時,等式也成立.根據(jù)(1)和(2),可知等式對任何都成立.第二章復習參考題A組(P98)1、圖略,共有()個圓圈.2、().3、因為,所以,,……猜想.4、運算的結果總等于1.5、如圖,設是四面體內任意一點,連結,,,并延長交對面于,,,,則用“體積法”證明:6、要證只需證即證由,得.①又因為,所以,變形即得①式.所以,命題得證.7、證明:(1)當時,左邊=,右邊=,因此,左邊=右邊.所以,當時,等式成立.(2)假設當時,等式成立,即.(第5題)那么,.

所以,當時,等式也成立.根據(jù)(1)和(2),可知等式對任何都成立.第二章復習參考題B組(P47)1、(1)25條線段,16部分;(2)條線段;(3)最多將圓分割成部分.下面用數(shù)學歸納法證明這個結論.①當時,結論成立.②假設當時,結論成立,即:條線段,兩兩相交,最多將圓分割成部分當時,其中的條線段兩兩相交,最多將圓分割成部分,第條線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論