2021年天津青年路中學高三數(shù)學理期末試卷含解析_第1頁
2021年天津青年路中學高三數(shù)學理期末試卷含解析_第2頁
2021年天津青年路中學高三數(shù)學理期末試卷含解析_第3頁
2021年天津青年路中學高三數(shù)學理期末試卷含解析_第4頁
2021年天津青年路中學高三數(shù)學理期末試卷含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021年天津青年路中學高三數(shù)學理期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息,設(shè)定原信息為傳輸信息為其中,運算規(guī)則為例如原信息為,則傳輸信息為,傳輸信息在傳輸過程中受到干擾可能導致接受信息出錯,則下列接受信息一定有誤的是

參考答案:C略2.函數(shù)的大致圖象為__________.參考答案:D3.某幾何體的三視圖如圖所示,則該幾何體的體積為A.6

B.

C.3

D.參考答案:D略4.“”是數(shù)列“為遞增數(shù)列”的

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件參考答案:A5.(5分)(2015?萬州區(qū)模擬)執(zhí)行如圖所示程序框圖,則輸出的S的值為()A.21B.25C.45D.93參考答案:【考點】:循環(huán)結(jié)構(gòu).【專題】:計算題;算法和程序框圖.【分析】:根據(jù)框圖的流程模擬運行程序,直到滿足條件S>10k,跳出循環(huán),計算輸出S的值.【解答】:由程序框圖知:第一次循環(huán)k=1,S=3;第二次循環(huán)k=2,S=2×3+3=9;第三次循環(huán)k=3,S=2×9+3=21;第四次循環(huán)k=4,S=2×21+3=45.滿足條件S>10k,跳出循環(huán),輸出S=45.故選:C.【點評】:本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程模擬運行程序是解答此類問題的常用方法.6.“”是“直線與直線互相垂直”的

(A)充分不必要條件

(B)必要不充分條件

(C)充要條件

(D)既不充分也不必要條件參考答案:A略7.已知直線與拋物線y2=4x交于A,B兩點(A在x軸上方),與x軸交于F點,,則λ﹣μ=()A. B. C. D.參考答案:B【考點】KN:直線與拋物線的位置關(guān)系.【分析】直線過拋物線的焦點F(1,0),把直線方程代入拋物線的方程解得A、B的坐標,由,得到3λ+μ=1,2λ﹣μ=0,解方程從而求得λ﹣μ的值.【解答】解:直線過拋物線的焦點F(1,0),把直線方程代入拋物線的方程y2=4x,解得,或,不妨設(shè)A(3,2)、B(,﹣).∵,∴(1,0)=(3λ,2λ)+(μ,﹣μ)=(3λ+μ,2λ﹣μ).∴3λ+μ=1,2λ﹣μ=0,∴λ=,μ=,則λ﹣μ=﹣.故選:B.8.在中,,A.4

B.-4

C.-8

D.8參考答案:D9.下列函數(shù)中,最小值為2的函數(shù)為

)A.

B.

C.

D.參考答案:D10.已知向量與的夾角為,且,,若,且,則實數(shù)的值為A. B.13 C.6 D.參考答案:D解:,且,.向量與的夾角為,且,,.解得:.故選:.二、填空題:本大題共7小題,每小題4分,共28分11.已知函數(shù),則____________參考答案:312.(幾何證明選講選做題)如圖,直角三角形中,,,以為直徑的圓交邊于點,,則的大小為

參考答案:略13.如果一個凸多面體棱錐,那么這個凸多面體的所有頂點所確定的直線共有

條.這些直線中共有對異面直線,則=

;=

。(答案用數(shù)字或的解析式表示)參考答案:答案:,12,解析:當多面體的棱數(shù)由n增加到n+1時,所確定的直線的條數(shù)將增加n+1,由遞推關(guān)系f(n+1)-f(n)=n+1我們能夠求出答案。從圖中我們明顯看出四棱錐中異面直線的對數(shù)為12對。能與棱錐每棱構(gòu)成異面關(guān)系的直線的條數(shù)為,進而得到f(n)的表達式14.若a>0,b>0,且函數(shù)在x=1處有極值,則ab的最大值

.參考答案:18略15.已知點F是拋物線的焦點,點M為拋物線C上任意一點,過點M向圓作切線,切點分別為A,B,則四邊形AFBM面積的最小值為______.參考答案:【分析】畫出滿足題意的圖象,可得M與原點重合時,四邊形AFBM面積最小,進而得到答案.【詳解】如下圖所示:圓的圓心與拋物線的焦點重合,若四邊形AFBM的面積最小,則MF最小,即M距離準線最近,故滿足條件時,M與原點重合,此時,此時四邊形AFBM面積,故答案:.【點睛】本題考查拋物線的標準方程及簡單幾何性質(zhì)。16.已知函數(shù)且,其中為奇函數(shù),為偶函數(shù),若不等式對任意恒成立,則實數(shù)的取值范圍是

.參考答案:17.兩車在十字路口相遇后,又沿不同方向繼續(xù)前進,已知A車向北行駛,速率為30km/h,B車向東行駛,速率為40km/h,那么A、B兩車間直線距離的增加速率為 .

參考答案:50km/h三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知直線L的參數(shù)方程為(t為參數(shù)),以原點O為極點,以x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=.(Ⅰ)直接寫出直線L的極坐標方程和曲線C的普通方程;(Ⅱ)過曲線C上任意一點P作與L夾角為的直線l,設(shè)直線l與直線L的交點為A,求|PA|的最大值.參考答案:【考點】簡單曲線的極坐標方程.【分析】(Ⅰ)利用三種方程的轉(zhuǎn)化方法,即可寫出直線L的極坐標方程和曲線C的普通方程;(Ⅱ)曲線C上任意一點P(cosθ,2sinθ)到l的距離為d=|2cosθ+2sinθ﹣6|.則|PA|==|2sin(θ+45°)﹣6|,利用正弦函數(shù)的單調(diào)性即可得出最值.【解答】解:(Ⅰ)直線L的參數(shù)方程為(t為參數(shù)),普通方程為2x+y﹣6=0,極坐標方程為2ρcosθ+ρsinθ﹣6=0,曲線C的極坐標方程為ρ=,即ρ2+3ρ2cos2θ=4,曲線C的普通方程為=1;(Ⅱ)曲線C上任意一點P(cosθ,2sinθ)到l的距離為d=|2cosθ+2sinθ﹣6|.則|PA|==|2sin(θ+45°)﹣6|,當sin(θ+45°)=﹣1時,|PA|取得最大值,最大值為.19.如圖,在三棱錐中,,,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值.參考答案:(Ⅰ)如圖,取的中點,連結(jié),.因為為正三角形,所以;因為,所以.又,,平面,所以平面.因為平面,所以.(Ⅱ)解法一:過點作的垂線,垂足為,連結(jié).因為平面,平面,所以平面平面,又平面平面,平面,故平面.所以直線與平面所成角為.在中,,,,由余弦定理得,所以.所以,.又,故,即直線與平面所成角的正弦值為.解法二:如圖,以原點,以,為,軸建立空間直角坐標系.可求得,則,,,.平面的一個法向量為,.設(shè)直線與平面所成角為,則.20.(本小題滿分12分)已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若當時(其中),不等式恒成立,求實數(shù)的取值范圍;(3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍.

參考答案:解析因為所以…….…….……….…….……….………1分令或,所以的單調(diào)增區(qū)間為和;令或所以的單調(diào)減區(qū)間為和

…….………4分(2)令或函數(shù)在上是連續(xù)的,又所以,當時,的最大值為故時,若使恒成立,則

……8分(3)原問題可轉(zhuǎn)化為:方程在區(qū)間上恰好有兩個相異的實根.令則令解得:當時,在區(qū)間上單調(diào)遞減,當時,在區(qū)間上單調(diào)遞增.在和處連續(xù),又且當時,的最大值是的最小值是在區(qū)間上方程恰好有兩個相異的實根時,實數(shù)的取值范圍是:

……12分21.某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該小賣部的這種飲料銷量y(杯),得到如下數(shù)據(jù):日

期1月11日1月12日1月13日1月14日1月15日平均氣溫x(°C)91012118銷量y(杯)2325302621(Ⅰ)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;(Ⅱ)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+;(Ⅲ)根據(jù)(Ⅱ)中所得的線性回歸方程,若天氣預報1月16日的白天平均氣溫7(°C),請預測該奶茶店這種飲料的銷量.(參考公式:=,=﹣)參考答案:【考點】BK:線性回歸方程.【分析】(Ⅰ)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有4種.根據(jù)等可能事件的概率做出結(jié)果.(Ⅱ)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.(Ⅲ)利用線性回歸方程,x取7,即可預測該奶茶店這種飲料的銷量.【解答】解:(Ⅰ)設(shè)“選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)”為事件A,所有基本事件(m,n)(其中m,n為1月份的日期數(shù))有:(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),共有10種.事件A包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4種.所以為所求.

…6分(Ⅱ)由數(shù)據(jù),求得,.由公式,求得,,所以y關(guān)于x的線性回歸方程為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論