版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆北京市西城區(qū)回民學校數(shù)學高三第一學期期末達標檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數(shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17642.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]3.若復數(shù)是純虛數(shù),則實數(shù)的值為()A.或 B. C. D.或4.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.5.我國古代數(shù)學名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸6.函數(shù)的定義域為()A.或 B.或C. D.7.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.8.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.9.下列函數(shù)中,在區(qū)間上單調遞減的是()A. B. C. D.10.如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.11.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.12.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是.14.若函數(shù)在區(qū)間上恰有4個不同的零點,則正數(shù)的取值范圍是______.15.已知數(shù)列與均為等差數(shù)列(),且,則______.16.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.18.(12分)已知函數(shù),,.函數(shù)的導函數(shù)在上存在零點.求實數(shù)的取值范圍;若存在實數(shù),當時,函數(shù)在時取得最大值,求正實數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實數(shù)的值.19.(12分)設數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.20.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數(shù),求隨機變量的分布列及數(shù)學期望.21.(12分)函數(shù),且恒成立.(1)求實數(shù)的集合;(2)當時,判斷圖象與圖象的交點個數(shù),并證明.(參考數(shù)據(jù):)22.(10分)已知,,求證:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
根據(jù)題目所給的步驟進行計算,由此求得的值.【題目詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【題目點撥】本小題主要考查合情推理,考查中國古代數(shù)學文化,屬于基礎題.2、B【解題分析】
先求出,得到,再結合集合交集的運算,即可求解.【題目詳解】由題意,集合,所以,則,所以.故選:B.【題目點撥】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.3、C【解題分析】試題分析:因為復數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)4、D【解題分析】
利用數(shù)列的遞推關系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【題目詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【題目點撥】本題考查數(shù)列的遞推關系式的應用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉化思想以及計算能力,是中檔題.5、B【解題分析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點:1.實際應用問題;2.圓臺的體積.6、A【解題分析】
根據(jù)偶次根式被開方數(shù)非負可得出關于的不等式,即可解得函數(shù)的定義域.【題目詳解】由題意可得,解得或.因此,函數(shù)的定義域為或.故選:A.【題目點撥】本題考查具體函數(shù)定義域的求解,考查計算能力,屬于基礎題.7、A【解題分析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【題目詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【題目點撥】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導公式,屬于基礎題.8、A【解題分析】
畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關于對稱,即得解.【題目詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【題目點撥】本題考查了正弦型函數(shù)的對稱性,考查了學生綜合分析,數(shù)形結合,數(shù)學運算的能力,屬于中檔題.9、C【解題分析】
由每個函數(shù)的單調區(qū)間,即可得到本題答案.【題目詳解】因為函數(shù)和在遞增,而在遞減.故選:C【題目點撥】本題主要考查常見簡單函數(shù)的單調區(qū)間,屬基礎題.10、B【解題分析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【題目詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【題目點撥】本題考查了幾何體的三視圖問題,解題的關鍵是要能由三視圖解析出原幾何體,從而解決問題.11、A【解題分析】
先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【題目詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【題目點撥】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結合五點法作圖求解.屬于中檔題.12、B【解題分析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調整.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】解:因為,故定義域為14、;【解題分析】
求出函數(shù)的零點,讓正數(shù)零點從小到大排列,第三個正數(shù)零點落在區(qū)間上,第四個零點在區(qū)間外即可.【題目詳解】由,得,,,,∵,∴,解得.故答案為:.【題目點撥】本題考查函數(shù)的零點,根據(jù)正弦函數(shù)性質求出函數(shù)零點,然后題意,把正數(shù)零點從小到大排列,由于0已經是一個零點,因此只有前3個零點在區(qū)間上.由此可得的不等關系,從而得出結論,本題解法屬于中檔題.15、20【解題分析】
設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項的性質可得,,解方程求出公差,代入等差數(shù)列的通項公式即可求解.【題目詳解】設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因為,所以,解得,所以數(shù)列的通項公式為,所以.故答案為:【題目點撥】本題考查等差數(shù)列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.16、1【解題分析】
由排列組合及分類討論思想分別討論:①設甲參加,乙不參加,②設乙參加,甲不參加,③設甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【題目詳解】①設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【題目點撥】本題考查了排列組合及分類討論思想,準確分類及計算是關鍵,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)利用二倍角公式及三角形內角和定理,將化簡為,求出的值,結合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結合,,求出的范圍,注意.進而求出周長的范圍.【題目詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【題目點撥】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應用,求三角形的周長的范圍問題.屬于中檔題.18、;4;12.【解題分析】
由題意可知,,求導函數(shù),方程在區(qū)間上有實數(shù)解,求出實數(shù)的取值范圍;由,則,分步討論,并利用導函數(shù)在函數(shù)的單調性的研究,得出正實數(shù)的最大值;設直線與曲線的切點為,因為,所以切線斜率,切線方程為,設直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,求得,設,則,所以在上單調遞增,最后求出實數(shù)的值.【題目詳解】由題意可知,,則,即方程在區(qū)間上有實數(shù)解,解得;因為,則,①當,即時,恒成立,所以在上單調遞增,不符題意;②當時,令,解得:,當時,,單調遞增,所以不存在,使得在上的最大值為,不符題意;③當時,,解得:,且當時,,當時,,所以在上單調遞減,在上單調遞增,若,則在上單調遞減,所以,若,則上單調遞減,在上單調遞增,由題意可知,,即,整理得,因為存在,符合上式,所以,解得,綜上,的最大值為4;設直線與曲線的切點為,因為,所以切線斜率,即切線方程整理得:由題意可知,,即,即,解得所以切線方程為,設直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,消去,整理得,且因為,解得,設,則,所以在上單調遞增,因為,所以,所以,即.【題目點撥】本題主要考查導數(shù)在函數(shù)中的研究,導數(shù)的幾何意義,屬于難題.19、(1)(2)見解析【解題分析】
(1)設數(shù)列的公差為,由,得到,再結合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【題目詳解】解:(1)設數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【題目點撥】本題考查等差數(shù)列的通項公式的計算,放縮法證明數(shù)列不等式,屬于中檔題.20、(1)(2)(i)(ii)分布列見解析,【解題分析】
(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數(shù)學期望即得解.【題目詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學期望為.【題目點撥】本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數(shù)學運算的能力,屬于中檔題.21、(1);(2)2個,證明見解析【解題分析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙開一個酒店合同范例
- 基礎裝修協(xié)議合同范例
- 買驢合同范例
- 個人建材供貨合同模板
- 2024年度瓷磚智能工廠建設購銷合同
- 合同范例 君合
- 倉庫租賃合同范例格式
- 買房交款合同范例
- 出租房壓金合同范例
- 單位合同范例寫范例
- 小學語文古詩詞教學探究的開題報告
- 動靜脈內瘺栓塞的原因分析及干預措施課件
- 換熱站的安裝調試
- 普通地質學教材
- 我的連衣裙【經典繪本】
- 農村公路暢通工程質量檢測方案第三方檢測及交工驗收
- 急性冠脈綜合征特殊人群抗血小板治療中國專家建議解讀
- 1 220kV外護套電纜試驗報告
- 機械加工工時定額標準計算手冊
- 盾構始發(fā)條件驗收
- GB/T 4372.1-2014直接法氧化鋅化學分析方法第1部分:氧化鋅量的測定Na2EDTA滴定法
評論
0/150
提交評論