2024學(xué)年河南省遂平中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
2024學(xué)年河南省遂平中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
2024學(xué)年河南省遂平中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
2024學(xué)年河南省遂平中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
2024學(xué)年河南省遂平中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年河南省遂平中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的部分圖象大致為()A. B.C. D.2.在正方體中,E是棱的中點(diǎn),F(xiàn)是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點(diǎn)F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值3.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),則乙、丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為A. B. C. D.4.已知等差數(shù)列的公差為,前項(xiàng)和為,,,為某三角形的三邊長,且該三角形有一個(gè)內(nèi)角為,若對任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.35.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.6.已知雙曲線:,,為其左、右焦點(diǎn),直線過右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.7.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.8.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.29.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.510.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.11.若函數(shù)的圖象過點(diǎn),則它的一條對稱軸方程可能是()A. B. C. D.12.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H二、填空題:本題共4小題,每小題5分,共20分。13.已知多項(xiàng)式滿足,則_________,__________.14.在長方體中,,,,為的中點(diǎn),則點(diǎn)到平面的距離是______.15.某高校開展安全教育活動(dòng),安排6名老師到4個(gè)班進(jìn)行講解,要求1班和2班各安排一名老師,其余兩個(gè)班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.16.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)萬眾矚目的第14屆全國冬季運(yùn)動(dòng)運(yùn)會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,19.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個(gè)人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計(jì)分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設(shè)張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時(shí),這個(gè)家庭就可以領(lǐng)取一臺全自動(dòng)洗衣機(jī),問張明和王慧他們家庭可以領(lǐng)取一臺全自動(dòng)洗衣機(jī)的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學(xué)期望.20.(12分)在△ABC中,分別為三個(gè)內(nèi)角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.21.(12分)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.22.(10分)已知圓,定點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線(1)求曲線的方程(2)過點(diǎn)的直線與交于兩點(diǎn),已知點(diǎn),直線分別與直線交于兩點(diǎn),線段的中點(diǎn)是否在定直線上,若存在,求出該直線方程;若不是,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!绢}目詳解】,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B?!绢}目點(diǎn)撥】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。2、C【解題分析】

分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷.【題目詳解】對于,設(shè)平面與直線交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點(diǎn)是線段上上的動(dòng)點(diǎn).正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯(cuò)誤.對于,因?yàn)?,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.3、B【解題分析】

求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【題目詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為,故選B.【題目點(diǎn)撥】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問題,其中解答中合理應(yīng)用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4、C【解題分析】

若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【題目詳解】由已知,,又三角形有一個(gè)內(nèi)角為,所以,,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【題目點(diǎn)撥】本題考查等差數(shù)列前n項(xiàng)和的最值問題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.5、D【解題分析】

設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【題目詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【題目點(diǎn)撥】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.6、D【解題分析】

由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【題目詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【題目點(diǎn)撥】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識,屬于中檔題.7、B【解題分析】

由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【題目詳解】如圖,因?yàn)樗倪呅螢榱庑危?,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【題目點(diǎn)撥】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.8、B【解題分析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【題目詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號成立.故選:.【題目點(diǎn)撥】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.9、D【解題分析】試題分析:拋物線焦點(diǎn)在軸上,開口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡化運(yùn)算.10、B【解題分析】

利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【題目詳解】因?yàn)椋ǎ?,所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B【題目點(diǎn)撥】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識.11、B【解題分析】

把已知點(diǎn)坐標(biāo)代入求出,然后驗(yàn)證各選項(xiàng).【題目詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個(gè)選項(xiàng)都不合題意,若,則函數(shù)為,只有時(shí),,即是對稱軸.故選:B.【題目點(diǎn)撥】本題考查正弦型復(fù)合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.12、C【解題分析】

由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡后可找到其對應(yīng)的點(diǎn).【題目詳解】由,所以,對應(yīng)點(diǎn).故選:C【題目點(diǎn)撥】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】∵多項(xiàng)式滿足∴令,得,則∴∴該多項(xiàng)式的一次項(xiàng)系數(shù)為∴∴∴令,得故答案為5,7214、【解題分析】

利用等體積法求解點(diǎn)到平面的距離【題目詳解】由題在長方體中,,,所以,所以,設(shè)點(diǎn)到平面的距離為,解得故答案為:【題目點(diǎn)撥】此題考查求點(diǎn)到平面的距離,通過在三棱錐中利用等體積法求解,關(guān)鍵在于合理變換三棱錐的頂點(diǎn).15、156【解題分析】

先考慮每班安排的老師人數(shù),然后計(jì)算出對應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【題目詳解】安排6名老師到4個(gè)班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個(gè)班,共有種,所以種.故答案為:.【題目點(diǎn)撥】本題考查排列組合的綜合應(yīng)用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進(jìn)行分析.16、-2【解題分析】試題分析:∵a2考點(diǎn):等比數(shù)列性質(zhì)及求和公式三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2)【解題分析】

(1)利用,推出,然后利用等差數(shù)列的通項(xiàng)公式,即可求解;(2)由(1)知,利用裂項(xiàng)法,即可求解數(shù)列的前n項(xiàng)和.【題目詳解】(1)由題意,數(shù)列滿足且可得,即,所以數(shù)列是公差,首項(xiàng)的等差數(shù)列,故,所以.(2)由(1)知,所以數(shù)列的前n項(xiàng)和:==【題目點(diǎn)撥】本題主要考查了等差數(shù)列的通項(xiàng)公式,以及“裂項(xiàng)法”求解數(shù)列的前n項(xiàng)和,其中解答中熟記等差數(shù)列的定義和通項(xiàng)公式,合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.18、(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解題分析】

(1)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表,求出,從而有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān).(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識講座.記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.【題目詳解】解:(1)由題意得下表:男女合計(jì)冰雪迷402060非冰雪迷202040合計(jì)6040100的觀測值為所以有的把握認(rèn)為該校教職工是“冰雪迷”與“性別”有關(guān).(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【題目點(diǎn)撥】本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題.19、(1)(2)詳見解析【解題分析】

(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨(dú)立事件概率計(jì)算公式,計(jì)算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨(dú)立事件概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.【題目詳解】(1)由題意,當(dāng)家庭最終積分超過200分時(shí),這個(gè)家庭就可以領(lǐng)取一臺全自動(dòng)洗衣機(jī),所以要想領(lǐng)取一臺全自動(dòng)洗衣機(jī),則需要這個(gè)家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設(shè)事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨(dú)立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領(lǐng)取一臺全自動(dòng)洗衣機(jī)的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【題目點(diǎn)撥】本小題考查概率,分布列,數(shù)學(xué)期望等概率與統(tǒng)計(jì)的基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,數(shù)據(jù)處理,應(yīng)用意識.20、(1);(2).【解題分析】

(1)整理得:,再由余弦定理可得,問題得解.(2)由正弦定理得:,,,再代入即可得解.【題目詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.【題目點(diǎn)撥】本題主要考查了正、余弦定理及三角形面積公式,考查了轉(zhuǎn)化思想及化簡能力,屬于基礎(chǔ)題.21、(1).(2).【解題分析】

(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20℃時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論