版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省黃岡市羅田縣駱駝坳中學(xué)高三數(shù)學(xué)文測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.如圖,一貨輪航行到M處,測得燈塔S在貨輪的北偏東150,與燈塔S相距20海里,隨后貨輪按照北偏西300的方向航行30分鐘到達(dá)N處后,又測得燈塔在貨輪的東北方向,則貨輪的速度為A.20(+)海里/時(shí);B.20(-)海里/時(shí);
C.20(+)海里/時(shí);D.20(-)海里/時(shí);;參考答案:B略2.已知x0是函數(shù)f(x)=ex﹣的一個(gè)零點(diǎn)(其中e為自然對(duì)數(shù)的底數(shù)),若x1∈(1,x0),x2∈(x0,+∞),則(
)A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0參考答案:B【考點(diǎn)】函數(shù)零點(diǎn)的判定定理.【專題】函數(shù)思想;定義法;函數(shù)的性質(zhì)及應(yīng)用.【分析】判斷函數(shù)f(x)的單調(diào)性,結(jié)合函數(shù)零點(diǎn)的定義,結(jié)合函數(shù)單調(diào)性的性質(zhì)進(jìn)行判斷即可.【解答】解:函數(shù)f(x)在(1,+∞)上為增函數(shù),∵x0是函數(shù)f(x)=ex﹣的一個(gè)零點(diǎn),∴f(x0)=e﹣=0,則當(dāng)x1∈(1,x0)時(shí),f(x1)<f(x0)=0,當(dāng)x2∈(x0,+∞)時(shí),f(x2)>f(x0)=0,故選:B.【點(diǎn)評(píng)】本題主要考查函數(shù)單調(diào)性和函數(shù)零點(diǎn)的應(yīng)用,利用函數(shù)的單調(diào)性是解決本題的關(guān)鍵.3.在△ABC中,點(diǎn)D滿足,點(diǎn)E是線段AD上的一個(gè)動(dòng)點(diǎn),若,則t=(λ﹣1)2+μ2的最小值是()A. B. C. D.參考答案:C【考點(diǎn)】平面向量的基本定理及其意義.【分析】根據(jù)共線向量基本定理可得到存在實(shí)數(shù)k,,0≤k≤1,然后根據(jù)已知條件及向量的加法、減法的幾何意義即可得到,從而得到.代入t,進(jìn)行配方即可求出t的最小值.【解答】解:如圖,E在線段AD上,所以存在實(shí)數(shù)k使得;;∴==;∴;∴=;∴時(shí),t取最小值.故選:C.4.已知,點(diǎn)滿足,則的最大值為(
)A.-5
B.-1
C.0
D.1參考答案:D
5.設(shè)是R上的可導(dǎo)函數(shù),分別為的導(dǎo)函數(shù),且滿足,則當(dāng)時(shí),有(
)A. B.C.
D.參考答案:C由題意令,則,∴函數(shù)在R上單調(diào)遞減,又,∴,即.選C.
6.已知函數(shù)f(x)=sin2x﹣cos2x+1,下列結(jié)論中錯(cuò)誤的是()A.f(x)的圖象關(guān)于(,1)中心對(duì)稱B.f(x)在(,)上單調(diào)遞減C.f(x)的圖象關(guān)于x=對(duì)稱D.f(x)的最大值為3參考答案:B【考點(diǎn)】三角函數(shù)中的恒等變換應(yīng)用;正弦函數(shù)的圖象.【分析】利用輔助角公式將函數(shù)進(jìn)行化簡,結(jié)合三角函數(shù)的單調(diào)性,最值性,對(duì)稱性的性質(zhì)分別進(jìn)行判斷即可.【解答】解:f(x)=sin2x﹣cos2x+1=2sin(2x﹣)+1,A.當(dāng)x=時(shí),sin(2x﹣)=0,則f(x)的圖象關(guān)于(,1)中心對(duì)稱,故A正確,B.由2kπ+≤2x﹣≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,當(dāng)k=0時(shí),函數(shù)的遞減區(qū)間是[,],故B錯(cuò)誤,C.當(dāng)x=時(shí),2x﹣=2×﹣=,則f(x)的圖象關(guān)于x=對(duì)稱,故C正確,D.當(dāng)2sin(2x﹣)=1時(shí),函數(shù)取得最大值為2+1=3,故D正確,故選:B7.下列幾個(gè)結(jié)論:①“”是“”的充分不必要條件;②③已知,,,則的最小值為;④若點(diǎn)在函數(shù)的圖象上,則的值為;⑤函數(shù)的對(duì)稱中心為其中正確的是_______________(寫出所有正確命題的序號(hào)).參考答案:②③④略8.若將函數(shù)的圖象向左平移個(gè)單位后所得圖象關(guān)于y輔對(duì)
稱,則m的最小值為(A)
(B)
(C)
(D)參考答案:C略9.定義在R上的函數(shù)f(x)滿足f(4)=1,為函數(shù)f(x)的導(dǎo)函數(shù),已知的圖像如圖所示,若兩個(gè)正數(shù)a,b滿足f(2a+b)<1,則的取值范圍是(
)參考答案:A略10.若集合M={x|﹣2<x<3},N={y|y=x2+1,x∈R},則集合M∩N=()A.(﹣2,+∞) B.(﹣2,3) C.[1,3) D.R參考答案:C【考點(diǎn)】交集及其運(yùn)算.【專題】計(jì)算題.【分析】先將N化簡,再求出M∩N.【解答】解:N={y|y=x2+1,x∈R}={y|y≥1}=[1,+∞),∵M(jìn)={x|﹣2<x<3}=(﹣2,3),∴M∩N=[1,3)故選C.【點(diǎn)評(píng)】本題考查了集合的含義、表示方法,集合的交集的簡單運(yùn)算,屬于基礎(chǔ)題.本題中N表示的是函數(shù)的值域.二、填空題:本大題共7小題,每小題4分,共28分11.(坐標(biāo)系與參數(shù)方程選做題)已知直線的極坐標(biāo)方程為,則點(diǎn)(0,0)到這條直線的距離是
.參考答案:12.如圖所示,已知一個(gè)多面體的平面展開圖由一個(gè)邊長為2的正方形和4個(gè)邊長為2的正三角形組成,則該多面體的體積是________.參考答案:略13.設(shè),(i為虛數(shù)單位),則的值為。參考答案:814.在等比數(shù)列中,,則公比
,
參考答案:在等比數(shù)列中,所以,即。所以,所以,即數(shù)列是一個(gè)公比為2的等比數(shù)列,所以。15.已知{an}是等差數(shù)列,,且.若,則{bn}的前n項(xiàng)和Tn=_____.參考答案:【分析】先設(shè)等差數(shù)列的公差為,根據(jù)題中條件,求出首項(xiàng)和公差,得到通項(xiàng)公式,進(jìn)而得到,再由分母有理化,用裂項(xiàng)相消的方法,即可求出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,由,可得,解得,所以,因此,所以,的前項(xiàng)和.故答案為【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式、以及裂項(xiàng)相消法求和,熟記公式即可,屬于常考題型.16.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°=
參考答案:2
略17.已知函數(shù)y=f(x)為R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+2)﹣3,則f(6)=,f(f(0))=.參考答案:解:∵當(dāng)x≥0時(shí),f(x)=log2(x+2)﹣3,∴f(6)=log2(6+2)﹣3=3﹣3=0f(0)=1﹣3=﹣2,∵函數(shù)y=f(x)為R上的偶函數(shù),∴f(f(0))=f(﹣2)=f(2)=2﹣3=﹣1故答案為:0,﹣1考點(diǎn):函數(shù)奇偶性的性質(zhì).專題:函數(shù)的性質(zhì)及應(yīng)用.分析:運(yùn)用解析式得出f(6)=log2(6+2)﹣3,結(jié)合函數(shù)的奇偶性f(f(0))=f(﹣2)=f(2)求解即可.解答:解:∵當(dāng)x≥0時(shí),f(x)=log2(x+2)﹣3,∴f(6)=log2(6+2)﹣3=3﹣3=0f(0)=1﹣3=﹣2,∵函數(shù)y=f(x)為R上的偶函數(shù),∴f(f(0))=f(﹣2)=f(2)=2﹣3=﹣1故答案為:0,﹣1點(diǎn)評(píng):本題簡單的考查了函數(shù)的性質(zhì),解析式,奇偶性的運(yùn)用,屬于簡單計(jì)算題三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知函數(shù),若函數(shù)滿足恒成立,則稱為函數(shù)的下界函數(shù).(1)若函數(shù)是的下界函數(shù),求實(shí)數(shù)的取值范圍;(2)證明:對(duì)任意的,函數(shù)都是的下界函數(shù).參考答案:(1)若為的下界函數(shù),易知不成立,而必然成立.當(dāng)時(shí),若為的下界函數(shù),則恒成立,即恒成立.令,則.易知函數(shù)在單調(diào)遞減,在上單調(diào)遞增.由恒成立得,解得.綜上知.(2)解法一
由(1)知函數(shù)是的下界函數(shù),即恒成立,若,構(gòu)造函數(shù),則,易知,即是的下界函數(shù),即恒成立.所以恒成立,即時(shí),是的下界函數(shù).解法二
構(gòu)造函數(shù),,.易知必有滿足,即.又因?yàn)樵谏蠁握{(diào)遞減,在上單調(diào)遞增,故,所以恒成立.即對(duì)任意的,是的下界函數(shù).略19.已知數(shù)列的前項(xiàng)和為.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,試比較的大小.參考答案:解:
(Ⅰ)由
(1)
得
(2)(2)-(1)得,
整理得
(
∴數(shù)列是以4為公比的等比數(shù)列.其中,,所以,
。。。。。。。。。。。。。。。。5分
(2)
。。。。。。。。。。。。。。。。。。。。。。20.某興趣小組進(jìn)行“野島生存”實(shí)踐活動(dòng),他們設(shè)置了200個(gè)取水敞口箱.其中100個(gè)采用A種取水法,100個(gè)采用B種取水法.如圖甲為A種方法一個(gè)夜晚操作一次100個(gè)水箱積取淡水量頻率分布直方圖,圖乙為B種方法一個(gè)夜晚操作一次100個(gè)水箱積取淡水量頻率分布直方圖.(1)設(shè)兩種取水方法互不影響,設(shè)M表示事件“A法取水箱水量不低于1.0kg,B法取水箱水量不低于1.1kg”,以樣本估計(jì)總體,以頻率分布直方圖中的頻率為概率,估計(jì)M的概率;(2)填寫下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為箱積水量與取水方法有關(guān).
箱積水量<1.1kg箱積水量≥1.1kg箱數(shù)總計(jì)A法
B法
箱數(shù)總計(jì)
附:0.0500.0100.0013.8416.63510.828參考答案:解:(1)設(shè)“法取水箱水量不低于”為事件,“法取水箱水量不低于”為事件,,,,故發(fā)生的概率為.(2)列聯(lián)表:
箱積水量箱積水量箱數(shù)總計(jì)法法箱數(shù)總計(jì),∴,∴有的把握認(rèn)為箱積水量與取水方法有關(guān).
21.(本小題滿分12分)近年來,某市為了促進(jìn)生活垃圾的風(fēng)分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)分垃圾箱,為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):
“廚余垃圾”箱“可回收物”箱“其他垃圾”箱廚余垃圾400100100可回收物3024030其他垃圾202060(Ⅰ)試估計(jì)廚余垃圾投放正確的概率;(Ⅱ)試估計(jì)生活垃圾投放錯(cuò)誤額概率;(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為其中a>0,=600。當(dāng)數(shù)據(jù)的方差最大時(shí),寫出的值(結(jié)論不要求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【全程復(fù)習(xí)方略】2020年高考政治一輪課時(shí)提升作業(yè)(9)-必修1-第4單元-第9課(江蘇專供)
- 安徽省蚌埠市A層高中2024-2025學(xué)年高二上學(xué)期第二次聯(lián)考地理試卷(含答案)
- 【原創(chuàng)】2013-2020學(xué)年高二數(shù)學(xué)必修四導(dǎo)學(xué)案:3.2二倍角的三角
- 【紅對(duì)勾】2021高考生物(人教版)一輪課時(shí)作業(yè):必修3-第6章-生態(tài)環(huán)境的保護(hù)
- 《胸腔鏡術(shù)后護(hù)理》課件
- 2024-2025學(xué)年廣東省汕頭市金平區(qū)七年級(jí)(上)期末數(shù)學(xué)試卷
- 五年級(jí)數(shù)學(xué)(小數(shù)乘法)計(jì)算題專項(xiàng)練習(xí)及答案匯編
- 【全程復(fù)習(xí)方略】2021年高中化學(xué)選修三課時(shí)達(dá)標(biāo)·效果檢測-第3章-晶體結(jié)構(gòu)與性質(zhì)3.4-
- 【優(yōu)化方案】2020-2021學(xué)年高一下學(xué)期數(shù)學(xué)(必修3)模塊綜合檢測
- 【志鴻優(yōu)化設(shè)計(jì)】2020高考地理(人教版)一輪教學(xué)案:第17章-第1講世界地理概況
- 2025年國務(wù)院發(fā)展研究中心信息中心招聘2人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 人工智能算法模型定制開發(fā)合同
- 英語-湖南省天一大聯(lián)考暨郴州市2025屆高考高三第二次教學(xué)質(zhì)量檢測(郴州二檢懷化統(tǒng)考)試題和答案
- 【MOOC期末】《形勢與政策》(北京科技大學(xué))期末慕課答案
- 營銷專業(yè)安全培訓(xùn)
- 2024年度五星級(jí)酒店廚師團(tuán)隊(duì)管理與服務(wù)合同3篇
- 2024年醫(yī)療健康知識(shí)科普視頻制作合同3篇
- 廣東省廣州市花都區(qū)2024年七年級(jí)上學(xué)期期末數(shù)學(xué)試題【附答案】
- 2024年古董古玩買賣協(xié)議6篇
- QC/T 1209-2024汽車噪聲與振動(dòng)(NVH)術(shù)語和定義
- 期末測試模擬練習(xí) (含答案) 江蘇省蘇州市2024-2025學(xué)年統(tǒng)編版語文七年級(jí)上冊
評(píng)論
0/150
提交評(píng)論