2022-2023學(xué)年江蘇省揚(yáng)州市武堅(jiān)中學(xué)數(shù)學(xué)高一第二學(xué)期期末檢測(cè)試題含解析_第1頁(yè)
2022-2023學(xué)年江蘇省揚(yáng)州市武堅(jiān)中學(xué)數(shù)學(xué)高一第二學(xué)期期末檢測(cè)試題含解析_第2頁(yè)
2022-2023學(xué)年江蘇省揚(yáng)州市武堅(jiān)中學(xué)數(shù)學(xué)高一第二學(xué)期期末檢測(cè)試題含解析_第3頁(yè)
2022-2023學(xué)年江蘇省揚(yáng)州市武堅(jiān)中學(xué)數(shù)學(xué)高一第二學(xué)期期末檢測(cè)試題含解析_第4頁(yè)
2022-2023學(xué)年江蘇省揚(yáng)州市武堅(jiān)中學(xué)數(shù)學(xué)高一第二學(xué)期期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.ΔABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知C=60°,b=6,c=3,則A=A.45° B.60° C.75° D.90°2.圓和圓的公切線條數(shù)為()A.1 B.2 C.3 D.43.在中,,,,則B等于()A.或 B. C. D.以上答案都不對(duì)4.某班的60名同學(xué)已編號(hào)1,2,3,…,60,為了解該班同學(xué)的作業(yè)情況,老師收取了號(hào)碼能被5整除的12名同學(xué)的作業(yè)本,這里運(yùn)用的抽樣方法是()A.簡(jiǎn)單隨機(jī)抽樣 B.系統(tǒng)抽樣C.分層抽樣 D.抽簽法5.已知,則下列不等式中成立的是()A. B. C. D.6.已知,則的值域?yàn)椋ǎ〢. B. C. D.7.是邊AB上的中點(diǎn),記,,則向量()A. B.C. D.8.已知,若,則等于()A. B.1 C.2 D.9.已知平面向量,,且,則=A. B. C. D.10.已知數(shù)列且是首項(xiàng)為2,公差為1的等差數(shù)列,若數(shù)列是遞增數(shù)列,且滿足,則實(shí)數(shù)a的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的圓心角為,半徑為,則扇形的弧長(zhǎng)為_(kāi)_____.12.求值:_____.13.過(guò)點(diǎn),且與直線垂直的直線方程為.14.若是等比數(shù)列,,,則________15.在單位圓中,面積為1的扇形所對(duì)的圓心角的弧度數(shù)為_(kāi).16.已知圓錐的高為,體積為,用平行于圓錐底面的平面截圓錐,得到的圓臺(tái)體積是,則該圓臺(tái)的高為_(kāi)______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,角所對(duì)的邊分別為,且.(1)求;(2)若,求的周長(zhǎng).18.如圖是某設(shè)計(jì)師設(shè)計(jì)的型飾品的平面圖,其中支架,,兩兩成,,,且.現(xiàn)設(shè)計(jì)師在支架上裝點(diǎn)普通珠寶,普通珠寶的價(jià)值為,且與長(zhǎng)成正比,比例系數(shù)為(為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價(jià)值為,且與的面積成正比,比例系數(shù)為.設(shè),.(1)求關(guān)于的函數(shù)解析式,并寫(xiě)出的取值范圍;(2)求的最大值及相應(yīng)的的值.19.設(shè)是等差數(shù)列,,且成等比數(shù)列.(1)求的通項(xiàng)公式;(2)記的前項(xiàng)和為,求的最小值.20.如圖是某神奇“黃金數(shù)學(xué)草”的生長(zhǎng)圖.第1階段生長(zhǎng)為豎直向上長(zhǎng)為1米的枝干,第2階段在枝頭生長(zhǎng)出兩根新的枝干,新枝干的長(zhǎng)度是原來(lái)的,且與舊枝成120°,第3階段又在每個(gè)枝頭各長(zhǎng)出兩根新的枝干,新枝干的長(zhǎng)度是原來(lái)的,且與舊枝成120°,……,依次生長(zhǎng),直到永遠(yuǎn).(1)求第3階段“黃金數(shù)學(xué)草”的高度;(2)求第13階段“黃金數(shù)學(xué)草”的高度;21.已知函數(shù)(1)解關(guān)于的不等式;(2)若,令,求函數(shù)的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

利用正弦定理求出sinB的值,由b<c得出B<C,可得出角B的值,再利用三角形的內(nèi)角和定理求出角A【詳解】由正弦定理得bsinB=∵b<c,則B<C,所以,B=45°,由三角形的內(nèi)角和定理得故選:C.【點(diǎn)睛】本題考查利用正弦定理解三角形,也考查了三角形內(nèi)角和定理的應(yīng)用,在解題時(shí)要注意正弦值所對(duì)的角有可能有兩角,可以利用大邊對(duì)大角定理或兩角之和小于180°2、B【解析】

判斷兩圓的位置關(guān)系,根據(jù)兩圓的位置關(guān)系判斷兩圓公切線的條數(shù).【詳解】圓的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,半徑長(zhǎng)為.圓的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,半徑長(zhǎng)為.圓心距為,由于,即,所以,兩圓相交,公切線的條數(shù)為,故選B.【點(diǎn)睛】本題考查兩圓公切線的條數(shù),本質(zhì)上就是判斷兩圓的位置關(guān)系,公切線條數(shù)與兩圓位置的關(guān)系如下:①兩圓相離條公切線;②兩圓外切條公切線;③兩圓相交條公切線;④兩圓內(nèi)切條公切線;⑤兩圓內(nèi)含沒(méi)有公切線.3、C【解析】試題分析:由正弦定理得,得,結(jié)合得,故選C.考點(diǎn):正弦定理.4、B【解析】由題意,抽出的號(hào)碼是5,10,15,…,60,符合系統(tǒng)抽樣的特點(diǎn):“等距抽樣”,故選B.5、D【解析】

由,,計(jì)算可判斷;由,,計(jì)算可判斷;由,可判斷;作差可判斷.【詳解】解:,當(dāng),時(shí),可得,故錯(cuò)誤;當(dāng),時(shí),,故錯(cuò)誤;當(dāng),,故錯(cuò)誤;,即,故正確.故選:.【點(diǎn)睛】本題考查不等式的性質(zhì),考查特殊值的運(yùn)用,以及運(yùn)算能力,屬于基礎(chǔ)題.6、C【解析】

由已知條件,先求出函數(shù)的周期,由于,即可求出值域.【詳解】因?yàn)?,所以,又因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以的值域?yàn)?故選:C.【點(diǎn)睛】本題考查三角函數(shù)的值域,利用了正弦函數(shù)的周期性.7、C【解析】由題意得,∴.選C.8、A【解析】

首先根據(jù)?(cos﹣3)cos+sin(sin﹣3)=﹣1,并化簡(jiǎn)得出,再化為Asin()形式即可得結(jié)果.【詳解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化簡(jiǎn)得,即sin()=,則sin()=故選A.【點(diǎn)睛】本題考查了三角函數(shù)的化簡(jiǎn)求值以及向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.9、B【解析】

根據(jù)向量平行求出x的值,結(jié)合向量模長(zhǎng)的坐標(biāo)公式進(jìn)行求解即可.【詳解】且,則故故選B.【點(diǎn)睛】本題考查向量模長(zhǎng)的計(jì)算,根據(jù)向量平行的坐標(biāo)公式求出x的值是解決本題的關(guān)鍵.10、D【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義可確定是以為首項(xiàng),為公比的等比數(shù)列,根據(jù)等比數(shù)列通項(xiàng)公式,進(jìn)而求得;由數(shù)列的單調(diào)性可知;分別在和兩種情況下討論可得的取值范圍.【詳解】由題意得:,,是以為首項(xiàng),為公比的等比數(shù)列為遞增數(shù)列,即①當(dāng)時(shí),,,即只需即可滿足②當(dāng)時(shí),,,即只需即可滿足綜上所述:實(shí)數(shù)的取值范圍為故選:【點(diǎn)睛】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問(wèn)題,涉及到等差和等比數(shù)列定義的應(yīng)用、等比數(shù)列通項(xiàng)公式的求解、對(duì)數(shù)運(yùn)算法則的應(yīng)用等知識(shí);解題關(guān)鍵是能夠根據(jù)單調(diào)性得到關(guān)于變量和的關(guān)系式,進(jìn)而通過(guò)分離變量的方式將問(wèn)題轉(zhuǎn)化為變量與關(guān)于的式子的最值的大小關(guān)系問(wèn)題.二、填空題:本大題共6小題,每小題5分,共30分。11、9【解析】

由扇形的弧長(zhǎng)公式運(yùn)算可得解.【詳解】解:由扇形的弧長(zhǎng)公式得:,故答案為9.【點(diǎn)睛】本題考查了扇形的弧長(zhǎng),屬基礎(chǔ)題.12、【解析】

根據(jù)同角三角函數(shù)的基本關(guān)系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,同角角三角函數(shù)基本關(guān)系主要有:,.屬于基礎(chǔ)題。13、【解析】

直線垂直表示斜率乘積為-1,所以可得新直線斜率,代入點(diǎn)即可.【詳解】直線的斜率等于-1,所以與之垂直直線斜率,再通過(guò)點(diǎn)斜式直線方程:,即.【點(diǎn)睛】此題考查直線垂直,直線垂直表示兩直線斜率之積為-1,屬于簡(jiǎn)單題目.14、【解析】

根據(jù)等比數(shù)列的通項(xiàng)公式求解公比再求和即可.【詳解】設(shè)公比為,則.故故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎(chǔ)題型.15、2【解析】試題分析:由題意可得:.考點(diǎn):扇形的面積公式.16、【解析】設(shè)該圓臺(tái)的高為,由題意,得用平行于圓錐底面的平面截圓錐,得到的小圓錐體積是,則,解得,即該圓臺(tái)的高為3.點(diǎn)睛:本題考查圓錐的結(jié)構(gòu)特征;在處理圓錐的結(jié)構(gòu)特征時(shí)可記住常見(jiàn)結(jié)論,如本題中用平行于圓錐底面的平面截圓錐,截面與底面的面積之比是兩個(gè)圓錐高的比值的平方,所得兩個(gè)圓錐的體積之比是兩個(gè)圓錐高的比值的立方.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】

分析:(1)利用正弦定理,求得,即可求出A,根據(jù)已知條件算出,再由大邊對(duì)大角,即可求出C;(2)易得,根據(jù)兩角和正弦公式求出,再由正弦定理求出和,即可得到答案.詳解:解:(1)由正弦定理得,又,所以,從而,因?yàn)?所以.又因?yàn)?,,所?(2)由(1)得由正弦定理得,可得,.所以的周長(zhǎng)為.點(diǎn)睛:本題主要考查正弦定理在解三角形中的應(yīng)用.正弦定理是解三角形的有力工具,其常見(jiàn)用法有以下四種:(1)已知兩邊和一邊的對(duì)角,求另一邊的對(duì)角(一定要注意討論鈍角與銳角);(2)已知兩角與一個(gè)角的對(duì)邊,求另一個(gè)角的對(duì)邊;(3)證明化簡(jiǎn)過(guò)程中邊角互化;(4)求三角形外接圓半徑.18、(1)();(2),的最大值是.【解析】試題分析:(1)運(yùn)用題設(shè)和實(shí)際建立函數(shù)關(guān)系并確定定義域;(2)運(yùn)用基本不等式求函數(shù)的最值和取得最值的條件.試題解析:(1)因?yàn)?,,,由余弦定理,,解得,由,得.又,得,解得,所以的取值范圍是.?),,則,設(shè),則.當(dāng)且僅當(dāng)即取等號(hào),此時(shí)取等號(hào),所以當(dāng)時(shí),的最大值是.考點(diǎn):閱讀理解能力和數(shù)學(xué)建模能力、基本不等式及在解決實(shí)際問(wèn)題中的靈活運(yùn)用.【易錯(cuò)點(diǎn)晴】應(yīng)用題是江蘇高考每年必考的重要題型之一,也是歷屆高考失分較多的題型.解答這類問(wèn)題的關(guān)鍵是提高考生的閱讀理解能力和數(shù)學(xué)建模能力,以及抽象概括能力.解答好這類問(wèn)題要過(guò):“審題、理解題意、建立數(shù)學(xué)模型、求解數(shù)學(xué)模型、作答”這五個(gè)重要環(huán)節(jié),其中審題關(guān)要求反復(fù)閱讀問(wèn)題中提供的一些信息,并將其與學(xué)過(guò)的數(shù)學(xué)模型進(jìn)行聯(lián)系,為建構(gòu)數(shù)學(xué)模型打下基礎(chǔ),最后的作答也是必不可少的重要環(huán)節(jié)之一,應(yīng)用題的解答最后一定要依據(jù)題設(shè)中提供的問(wèn)題做出合理的回答,這也是失分較多一個(gè)環(huán)節(jié).19、(1);(2)【解析】

(1)利用等差數(shù)列通項(xiàng)公式和等比數(shù)列的性質(zhì),列出方程求出,由此能求出的通項(xiàng)公式.(2)由,,求出的表達(dá)式,然后轉(zhuǎn)化求解的最小值.【詳解】解:(1)是等差數(shù)列,,且,,成等比數(shù)列.,,解得,.(2)由,,得:,或時(shí),取最小值.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式、前項(xiàng)和的最小值的求法,考查等差數(shù)列、等比數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.20、(1)(2)【解析】

(1)根據(jù)示意圖,計(jì)算出第階段、第階段生長(zhǎng)的高度,即可求解出第階段“黃金數(shù)學(xué)草”的高度;(2)考慮第偶數(shù)階段、第奇數(shù)階段“黃金數(shù)學(xué)草”高度的生長(zhǎng)量之間的關(guān)系,構(gòu)造數(shù)列,利用數(shù)列求和完成第階段“黃金數(shù)學(xué)草”的高度的計(jì)算.【詳解】(1)因?yàn)榈谝浑A段:,所以第階段生長(zhǎng):,第階段的生長(zhǎng):,所以第階段“黃金數(shù)學(xué)草”的高度為:;(2)設(shè)第個(gè)階段生長(zhǎng)的“黃金數(shù)學(xué)草”的高度為,則第個(gè)階段生長(zhǎng)的“黃金數(shù)學(xué)草”的高度為,第階段“黃金數(shù)學(xué)草”的高度為,所以,所以數(shù)列按奇偶性分別成公比為等比數(shù)列,所以.所以第階段“黃金數(shù)學(xué)草”的高度為:.【點(diǎn)睛】本題考查等比數(shù)列以及等比數(shù)列的前項(xiàng)和的實(shí)際應(yīng)用,難度較難.處理數(shù)列的實(shí)際背景問(wèn)題,第

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論