2022-2023學(xué)年廣東省茂名市茂南區(qū)祥和中學(xué)八年級(下)期中數(shù)學(xué)試卷(含解析)_第1頁
2022-2023學(xué)年廣東省茂名市茂南區(qū)祥和中學(xué)八年級(下)期中數(shù)學(xué)試卷(含解析)_第2頁
2022-2023學(xué)年廣東省茂名市茂南區(qū)祥和中學(xué)八年級(下)期中數(shù)學(xué)試卷(含解析)_第3頁
2022-2023學(xué)年廣東省茂名市茂南區(qū)祥和中學(xué)八年級(下)期中數(shù)學(xué)試卷(含解析)_第4頁
2022-2023學(xué)年廣東省茂名市茂南區(qū)祥和中學(xué)八年級(下)期中數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第第頁2022-2023學(xué)年廣東省茂名市茂南區(qū)祥和中學(xué)八年級(下)期中數(shù)學(xué)試卷(含解析)2022-2023學(xué)年廣東省茂名市茂南區(qū)祥和中學(xué)八年級(下)期中數(shù)學(xué)試卷

學(xué)校:___________姓名:___________班級:___________考號:___________

第I卷(選擇題)

一、選擇題(本大題共10小題,共30.0分。在每小題列出的選項中,選出符合題目的一項)

1.已知,下列不等式變形中正確的是()

A.B.C.D.

2.下列所給圖形中,既是中心對稱圖形又是軸對稱圖形的是()

A.B.C.D.

3.在下列四組線段中,不能組成直角三角形的是()

A.B.

C.D.

4.中,,求證:用反證法證明時,第一步應(yīng)先假設(shè)這個三角形中()

A.B.C.D.

5.不等式的解集在數(shù)軸上表示正確的是()

A.B.

C.D.

6.在平面直角坐標(biāo)系中,將點向上平移個單位長度,再向左平移個單位長度,得到點,則點的坐標(biāo)是()

A.B.C.D.

7.如圖所示,一次函數(shù)、為常數(shù),且與正比例函數(shù)為常數(shù),且相交于點,則不等式的解集是()

A.B.C.D.

8.如圖,在中,分別以點和點為圓心,大于的長為半徑畫弧,兩弧相交于點,,作直線,交于點,連接若的周長為,,則的周長為()

A.

B.

C.

D.

9.如圖,兩個全等的直角三角形重疊在一起,將其中的一個三角形沿著點到的方向平移到的位置,,,平移距離為,則陰影部分面積為()

A.B.C.D.

10.由個有公共頂點的直角三角形拼成的圖形如圖所示,,且點在線段上若,則的長為()

A.

B.

C.

D.

第II卷(非選擇題)

二、填空題(本大題共5小題,共15.0分)

11.如圖所示,,,若,則______.

12.“輸入一個實數(shù),然后經(jīng)過如圖的運算,到判斷是否大于為止”叫做一次操作,若恰好經(jīng)過一次操作就停止,則的取值范圍是______.

13.如圖,繞點順時針旋轉(zhuǎn)后與重合若,則______.

14.已知等腰三角形的兩條邊長分別是,,那么這個等腰三角形的周長是______.

15.不等式組的解集是,那么的取值范圍是______.

三、解答題(本大題共8小題,共75.0分。解答應(yīng)寫出文字說明,證明過程或演算步驟)

16.本小題分

解不等式組:

;

并把解集在數(shù)軸上表示出來.

17.本小題分

在平面直角坐標(biāo)系中,已知點的坐標(biāo)為.

若點在軸上,求點的坐標(biāo);

若點在第四象限,求的取值范圍.

18.本小題分

如圖,在等邊三角形中,點,分別在邊,上,且,求證:.

19.本小題分

在如圖所示的平面直角坐標(biāo)系中跟小非大本

將先向右平移個單位,再向下平移個單位,畫出平移后對應(yīng)的.

繞點按逆時針方向旋轉(zhuǎn),畫出旋轉(zhuǎn)后對應(yīng)的,寫出點坐標(biāo).

20.本小題分

如圖,是等腰三角形,,點是上一點,過點作交于點,交延長線于點.

證明:是等腰三角形;

若,,,求的長.

21.本小題分

某商店欲購進、兩種商品,若購進種商品件和種商品件需元;若購進種商品件和種商品件需元;

求、兩種商品每件的進價分別為多少元?

商店準備用不超過元購進件這兩種商品,求購進種商品最多是多少件?

22.本小題分

已知一次函數(shù),其中.

若點在的圖象上,則的值是______;

若,且當(dāng)時,函數(shù)的最大值為,求的函數(shù)表達式:

對于一次函數(shù),其中,若對一切實數(shù),都成立,求的取值范圍.

23.本小題分

如圖,在中,,,,動點從點出發(fā),按的路徑,以每秒的速度運動,設(shè)運動時間為秒.

當(dāng)時,求的面積;

當(dāng)為何值時,線段恰好平分?

當(dāng)為何值時,是等腰三角形?

答案和解析

1.【答案】

【解析】解:、若,則,故此選項錯誤;

B、若,則,故此選項錯誤;

C、若,則,故此選項錯誤;

D、若,則,故此選項正確;

故選:.

根據(jù)不等式的性質(zhì)不等式的兩邊同時加上或減去同一個數(shù)或同一個含有字母的式子,不等號的方向不變;不等式的兩邊同時乘以或除以同一個正數(shù),不等號的方向不變;不等式的兩邊同時乘以或除以同一個負數(shù),不等號的方向改變進行分析即可.

此題主要考查了不等式的性質(zhì),熟練掌握不等式的性質(zhì)是本題的關(guān)鍵,是一道基礎(chǔ)題.

2.【答案】

【解析】解:、不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;

B、不是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;

C、是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;

D、是中心對稱圖形,也是軸對稱圖形,故此選項正確.

故選:.

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.

本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)度后兩部分重合.

3.【答案】

【解析】解:、,故不能組成直角三角形,符合題意;

B、,故是直角三角形,不符合題意;

C、,故是直角三角形,不符合題意;

D、,故是直角三角形,不符合題意.

故選:.

由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方即可.

本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.

4.【答案】

【解析】解:中,,求證:,

用反證法證明時,第一步應(yīng)先假設(shè)這個三角形中,

故選:.

根據(jù)反證法的步驟中,第一步是假設(shè)結(jié)論不成立,反面成立解答即可.

本題考查的是反證法的應(yīng)用,解此題關(guān)鍵要懂得反證法的意義及步驟.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.

5.【答案】

【解析】解:,

,

,

故選:.

根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為可得.

本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.

6.【答案】

【解析】解:將點向上平移個單位長度,再向左平移個單位長度,得到點,

橫坐標(biāo)變?yōu)?,縱坐標(biāo)變?yōu)椋?/p>

所以點的坐標(biāo)是.

故選:.

根據(jù)向左平移橫坐標(biāo)減,向上平移,縱坐標(biāo)加解答.

本題考查了利用平移解答坐標(biāo)與圖形的變化,平移中點的變化規(guī)律是:橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減.

7.【答案】

【解析】解:由圖象可知:的坐標(biāo)是,

當(dāng)時,一次函數(shù)的圖象在的上方,

即,

故選D.

根據(jù)圖象求出的坐標(biāo),根據(jù)圖象可以看出當(dāng)時,一次函數(shù)的圖象在的上方,即可得出答案.

本題主要考查對一次函數(shù)與一元一次不等式的理解和掌握,能根據(jù)圖象得出當(dāng)時是解此題的關(guān)鍵.

8.【答案】

【解析】解:在中,分別以點和點為圓心,大于的長為半徑畫弧,兩弧相交于點,,作直線,交于點,連接.

是的垂直平分線,

,

的周長為,

,

的周長為:.

故選:.

首先根據(jù)題意可得是的垂直平分線,即可得,又由的周長為,求得的長,則可求得的周長.

此題考查了線段垂直平分線的性質(zhì)與作法.題目難度不大,解題時要注意數(shù)形結(jié)合思想的應(yīng)用.

9.【答案】

【解析】

【分析】

本題主要考查了平移的性質(zhì)及梯形的面積公式,得出陰影部分和梯形的面積相等是解題的關(guān)鍵.

根據(jù)平移的性質(zhì)得出,,則,則陰影部分面積,根據(jù)梯形的面積公式即可求解.

【解答】

解:由平移的性質(zhì)知,,,

,

故選:.

10.【答案】

【解析】解:由圖可知,,

,

,

,,

同理可得,,

故選:.

由已知可知,,可知::::::::,由此可求出的長.

本題主要考查含角的直角三角形的三邊關(guān)系,屬于基礎(chǔ)題,掌握含角的直角三角形的三邊關(guān)系是解題的關(guān)鍵.

11.【答案】

【解析】解:,

,

故答案為:.

由題意知,和均為等腰三角形,應(yīng)先根據(jù)三角形內(nèi)角和定理求得的度數(shù)后,再求的度數(shù)即可求得的度數(shù).

本題考查了等腰三角形的性質(zhì)及三角形內(nèi)角和定理;解題時注意:等腰三角形的兩個底角相等.

12.【答案】

【解析】解:依題意得:,

解得:.

故答案為:.

根據(jù)運算程序恰好經(jīng)過一次操作就停止,即可得出關(guān)于的一元一次不等式,解之即可得出結(jié)論.

本題考查了一元一次不等式的應(yīng)用,根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式是解題的關(guān)鍵.

13.【答案】

【解析】解:繞點順時針旋轉(zhuǎn)后與重合,

,

,

故答案為:.

根據(jù)旋轉(zhuǎn)的性質(zhì)得,即可得出答案.

本題主要考查了旋轉(zhuǎn)的性質(zhì),熟練掌握旋轉(zhuǎn)角相等是解題的關(guān)鍵.

14.【答案】或

【解析】解:分兩種情況進行討論:

當(dāng)是腰,是底時,,能構(gòu)成三角形,此時周長;

當(dāng)是腰,是底時,,能構(gòu)成三角形,此時周長.

故答案為:或.

分兩種情況進行討論,并注意應(yīng)用三角形三邊之間關(guān)系進行驗證能否組成三角形.

本題主要考查了等腰三角形的性質(zhì)和三角形三邊之間的關(guān)系.已知等腰三角形的兩條邊求周長時一定要進行分類討論,并且要用三角形三邊之間關(guān)系進行驗證能否組成三角形,這是解題的關(guān)鍵.

15.【答案】

【解析】解:,

解之得,

而,

并且不等式組解集為,

首先解不等式得,而,并且不等式組解集為,由此即可確定的取值范圍.

此題主要考查了如何確定不等式組的解集,首先確定已知不等式的解集,然后結(jié)合不等式組的解集和另一個不等式的形式就可以確定待定系數(shù)的取值范圍.

16.【答案】解:,

,

則;

由得:,

由得:,

則不等式組的解集為,

將解集表示在數(shù)軸上如下:

【解析】依次移項,合并同類項,系數(shù)化為即可得出答案;

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小找不到確定不等式組的解集.

本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.

17.【答案】解:點在軸上,

解得,

則點的坐標(biāo)為;

點在第四象限,

解得.

【解析】由軸上點的橫坐標(biāo)為得出關(guān)于的方程,解之即可;

由第四象限內(nèi)點的坐標(biāo)符號特點列出關(guān)于的不等式組,解之即可.

本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.

18.【答案】證明:為等邊三角形,

,.

在和中,,

≌,

【解析】根據(jù)等邊三角形的性質(zhì)可得出、,結(jié)合即可證出≌,再根據(jù)全等三角形的性質(zhì)即可得出.

本題考查了全等三角形的判定與性質(zhì)以及等邊三角形的性質(zhì),利用全等三角形的判定定理證出≌是解題的關(guān)鍵.

19.【答案】解:如圖,即為所求.

如圖,即為所求,.

【解析】根據(jù)平移的性質(zhì)作圖即可.

根據(jù)旋轉(zhuǎn)的性質(zhì)作圖即可.

本題考查作圖平移變換、旋轉(zhuǎn)變換,熟練掌握平移和旋轉(zhuǎn)的性質(zhì)是解答本題的關(guān)鍵.

20.【答案】證明:,

,

,,

,

而,

,

,

是等腰三角形;

解:,

,

,,

,

是等邊三角形,

,

【解析】由,可知,再由,可知,,然后由余角的性質(zhì)可推出,再根據(jù)對頂角相等進行等量代換即可推出,于是得到結(jié)論;

根據(jù)含角的直角三角形和等邊三角形的判定與性質(zhì)即可得到結(jié)論.

本題主要考查等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、余角的性質(zhì)、對頂角的性質(zhì)等知識點,關(guān)鍵根據(jù)相關(guān)的性質(zhì)定理,通過等量代換推出,即可推出結(jié)論.

21.【答案】解:設(shè)種商品每件的進價為元,種商品每件的進價為元,

依題意,得:,

解得:.

答:種商品每件的進價為元,種商品每件的進價為元.

設(shè)購進種商品件,則購進種商品件,

依題意,得:,

解得:.

答:購進種商品最多是件.

【解析】設(shè)種商品每件的進價為元,種商品每件的進價為元,根據(jù)“若購進種商品件和種商品件需元;若購進種商品件和種商品件需元”,即可得出關(guān)于,的二元一次方程組,解之即可得出結(jié)論;

設(shè)購進種商品件,則購進種商品件,根據(jù)總價單價數(shù)量結(jié)合總價不超過元,即可得出關(guān)于的一元一次不等式,解之取其中的最大值即可得出結(jié)論.

本題考查了二元一次方程組的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:找準等量關(guān)系,正確列出二元一次方程組;根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.

22.【答案】

【解析】解:點在的圖象上,

,

解得;

故答案為:;

,

當(dāng)時,函數(shù)的最大值為,

時,,

把代入,得,

解得,

一次函數(shù)解析式為;

,

對一切實數(shù),都成立,

且,

,

解得,

故的取值范圍是且.

把代入中可求出的值;

根據(jù),當(dāng)時,函數(shù)的最大值為,由一次函數(shù)的性質(zhì)得到時,,然后把代入中求出得到此時一次函數(shù)解析式;

先整理得到,再對一切實數(shù),都成立,則直線與平行,且在的上方,所以且,進而即可求得的取值范圍.

本題考查了一次函數(shù)與一元一次不等式,從函數(shù)的角度看,就是尋求使一次函數(shù)的值大于或小于的自變量的取值范圍;從函數(shù)圖象的角度看,就是確定直線在軸上或下方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.也考查了一次函數(shù)的性質(zhì).

23.【答案】解:由題意得,當(dāng)時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論