各類氣體傳感器的作用及原理解讀_第1頁
各類氣體傳感器的作用及原理解讀_第2頁
各類氣體傳感器的作用及原理解讀_第3頁
各類氣體傳感器的作用及原理解讀_第4頁
各類氣體傳感器的作用及原理解讀_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第第頁各類氣體傳感器的作用及原理解讀氣體(傳感器)是氣體(檢測)系統(tǒng)的核心,通常安裝在探測頭內。從本質上講,氣體傳感器是一種將某種氣體體積分數轉化成對應電(信號)的(轉換器)。探測頭通過氣體傳感器對氣體樣品進行調理,通常包括濾除雜質和干擾氣體、干燥或制冷處理、樣品抽吸,甚至對樣品進行化學處理,以便化學傳感器進行更快速的測量。

氣體種類繁多,性質各異,因此,氣體傳感器種類也很多。按待檢氣體性質可分為:用于檢測易燃易爆氣體的傳感器,如氫氣、一氧化碳、瓦斯、汽油揮發(fā)氣等;用于檢測有毒氣體的傳感器,如氯氣、硫化氫、砷烷等;用于檢測(工業(yè))過程氣體的傳感器,如煉鋼爐中的氧氣、熱處理爐中的二氧化碳;用于檢測大氣污染的傳感器,如形成酸雨的NOx、CH4、O3,家庭污染如甲醛等。按氣體傳感器的結構還可分為干式和濕式兩類;按傳感器的輸出可分為(電阻)式和費電阻式兩類;按檢測院里可分為電化學法、(電氣)法、(光學)法、化學法幾類。

作用原理

由不同原子構成的分子會有獨特的振動、轉動頻率,當其受到相同頻率的紅外線照射時,就會發(fā)生紅外吸收,從而引起紅外光強的變化,通過測量紅外線強度的變化就可以測得氣體濃度;需要說明的是振動、轉動是兩種不同的運動形態(tài),這兩種運動形態(tài)會對應不同的紅外吸收峰,振動和轉動本身也有多樣性;因此一般情況下一種氣體分子會有多個紅外吸收峰;根據單一的紅外吸收峰位置只能判定氣體分子中有什么基團,精確判定氣體種類需要看氣體在中紅外區(qū)所有的吸收峰位置即氣體的紅外吸收指紋。但在已知環(huán)境條件下,根據單一紅外吸收峰的位置可以大致判定氣體的種類。由于在零下273攝氏度即絕對零度以上的一切物質都會產生紅外幅射,紅外幅射與溫度正相關,因此,同催化元件一樣,為消除環(huán)境溫度變化引起的紅外幅射的變化,紅外氣體傳感器中會由一對紅外(探測器)構成。

一個完整的紅外氣體傳感器由紅外光源、光學腔體、紅外探測器和信號調理電路構成。

為什么紅外氣體傳感器不能測量氧氣、氫氣、氮氣等由相同原子構成的氣體分子?

月亮和地球、地球和太陽靠萬有引力連接,分子內部原子間靠化學鍵連接。如果二者是理想球體而且沒有其它萬有引力干擾則地球軌道將是圓的,實際上上面兩個條件都不成立,因此其軌道是橢圓的,也就是地球和太陽之間的距離不停地在短半徑和長半徑之間轉換,即振動,只是振動周期長達一年,在這個過程中,地球處于短半徑點和長半徑點時,它和太陽之間的引力是不同的,即能量級別不同。在分子內部原子間靠化學鍵連接,原子間的空間距離、角度、方向由于電子分布的不均衡而不停發(fā)生變化,即振動、轉動,而且不同的分子會有獨特的振動、轉動頻率,當遇到相同頻率的紅外線照射時會產生諧振、原子間距離和電子分布發(fā)生變化即偶極距發(fā)生變化,紅外吸收就是這樣產生的(紫外吸收同理)。

以上內容中包含紅外吸收的兩個基本條件:諧振、偶極距變化。這兩個條件同時滿足才能產生紅外吸收。

氧氣、氫氣、氮氣等由同一種原子構成的分子為什么沒有紅外吸收峰:兩個基本條件一是氣體分子振動頻率與照射的紅外線頻率相同,二是偶極距變化。不難理解,第一個條件容易滿足,第二個條件無可能性。

相同原子構成的分子正負電荷中心完全重疊,即偶極距為零,其結果是電子在分子中的分布是均衡的,以紅外光本身的低能量密度特征,其照射不會改變這種均衡,更不可能使分子電離,即不會導致能量變化。而不同原子構成的分子:以水(蒸氣)分子為例,分子中電子的分布偏向氧這端,即微觀上水分子中氫那一端呈正電性,氧那一端呈負電性,正負電荷中心是不重疊的,即偶極矩不為零。這是因為氧吸引電子的能力比氫強的緣故。

在與水分子振動、轉動頻率相同的紅外線照射時,會使電子在水分子中的分布更偏向氧一端,導致氫和氧的平均距離變短,即偶極距變短,能量變高,即水分子受到紅外照射時會從低能級躍遷到高能級,紅外吸收就是這樣產生的??梢赃@樣去簡單理解:紅外線與相同原子組成的分子相遇時,由于相同原子組成的分子是理想的彈性球體,兩者的相互作用是完全彈性碰撞,只有能量交換,沒有能量轉移。不同原子組成的分子與紅外線相互作用則有能量轉移。因此,紅外吸收原理不能測相同原子構成的分子。

非色散紅外吸收氣體傳感器

非色散:白光通過三棱鏡會被分為七色光即赤、橙、黃、綠、青、藍、紫。這個三棱鏡就是一個分光系統(tǒng),能把7色光分開。有分光系統(tǒng)的光學系統(tǒng)即色散型光學系統(tǒng),無分光系統(tǒng)的光學系統(tǒng)即非色散性。非色散系統(tǒng)簡易、可靠、小巧、廉價。平時我們感受到的白光、紫外、紅外光都是不同頻率、波長混合成的光;而單頻率、單波長的光即單色光。前面講到只有紅外線的頻率和氣體分子振動、轉動頻率相同時才會產生紅外吸收,理論上在設計氣體傳感器時,我們希望用單色光去照射氣體或者照射后我們用設置光柵(濾光片)的辦法獲得單色光。

非色散紅外氣體傳感器通常由光源、光學腔體、濾光片(光柵)、探測器和信號調理電路構成,在傳感器中濾光片和探測器是一體的。

紅外氣體傳感器優(yōu)點:

1、除了相同原子組成的氣體,所有氣體都可以測。

2、全量程。

3、傳感過程本身不會干擾傳感。

缺點:

1、昂貴。紅外氣體傳感器本質上是紅外幅射導致探測器溫度變化進而是電性能變化的(溫度傳感器),傳感過程復雜。要求系統(tǒng)有如下特征:光源必須有穩(wěn)定的紅外幅射;光學腔體物理化學性質穩(wěn)定;濾光片及紅外探測器穩(wěn)定。這些問題,合理的工藝技術本身能較好的解決,但是制造成本高,導致價格昂貴。

2、在普通的以寬頻紅外光源加濾光片加探測器設計中,濾光片本身不能實現理想的選擇性濾光,因此干擾尤其是水的干擾一直存在。選擇性的問題深層原因在于很多不同的氣體分子會有相同的化學鍵,即有相近甚至重疊的紅外吸收。

3、粉塵、背景幅射、強吸附及氣、液、固易發(fā)生轉換的檢測對象都會對檢測結果造成影響。

催化燃燒式氣體傳感器

作用原理

一般由線徑15um或20um或30um的高純度鉑線圈并在其外包裹載體催化劑形式球體,在一定的溫度條件下,當可燃性氣體與上述球體接觸時會與其表面的吸附氧發(fā)生劇烈的無焰燃燒反應,反應釋放的熱量導致鉑線圈溫度變化,溫度變化又導致鉑線圈電阻發(fā)生變化,測量電阻變化就可以測到氣體濃度。

因此與其說催化元件是氣體傳感器不如說他是個溫度傳感器,為克服環(huán)境溫度變化帶來的干擾,催化元件會成對構成一支完整的元件,這一對中一個對氣體有反應,另一個對氣體無反應,而只對環(huán)境溫度有反應,這樣兩支元件相互對沖就可以消除環(huán)境溫度變化帶來的干擾。

和半導體元件不同,催化元件傳感過程較為復雜,前者是氣體與傳感器接觸后發(fā)生的化學反應直接導致傳感器電阻即電信號的變化,后者則是氣體在催化元件上發(fā)生的化學反應首先導致的結果是傳感器載體表面及載體內部的溫度變化,載體的溫度變化經過熱傳遞最終導致鉑線圈電阻的變化,完成傳感的全過程。

存在的問題

傳感過程復雜,導致問題產生的幾率就大一些。

1、對長分子鏈的有機物以及不飽和烴,對半導體來說,不完全反應導致的積炭只會對反應過程產生影響,而不會對電子傳輸產生大的影響,而對催化來講,炭的存在不僅影響反應過程,更會對熱傳遞產生劇烈影響,結果是反應產生的熱量向傳感器內部傳遞效率變低了,熱量大都散失掉了,最終是,同樣的氣體濃度,釋放同樣的熱,由于炭的存在,導致傳感器:溫度只有很小的變化,即靈敏度變得很低。

2、因為需要熱傳遞,為了保證熱效率,反應必須在瞬間完成,即要求有極高的反應效率,就需要有大量的納米級的催化劑以及納米級的孔,這樣的特征有利于傳感也有利于中毒。

3、催化元件的線性是由兩個因素決定的a、溫度傳感材料pt線圈的電阻~溫度特性是線性的。b、爆炸下限以內反應放熱和氣體濃度是線性的。因此,兩個因素任一發(fā)生變化,就會導致傳感器線性變化。實際上,鉑線圈會持續(xù)升華變細即導阻變大;反應釋放的熱量與濃度的線性關系只在氣體濃度為爆炸下限以內時才成立。

未來發(fā)展

催化元件的未來主要取決于工藝技術的進步:

1、結構改進,解決的問題是震動引起的漂移。

2、過濾層改進,解決的問題是中毒。

3、開發(fā)新材料改善積碳。

4、制造過程對設計實現的保障如避免形變。

5、(MEMS)化。需要說明的是,器件結構、封裝、制造工藝的改進不僅會改善元件的綜合性能,也會引發(fā)新的應用。和半導體相比,催化元件MEMS化的困境在于如何在小的表面積下有更高的催化效率、熱效率。

6、催化元件的應用定位會更精準專一。

7,催化元件不會被淘汰。

電化學傳感器

電化學就是研究電學和化學行為之間關系的學科。這個學科最重要的應用是電能與化學能之間的高效轉換和大功率密度存儲技術。我們知道本質上傳感器是一種能量轉換裝置,如(壓力傳感器)就是把(機械)能轉換為電能的裝置。因此,很容易理解,電化學氣體傳感器就是一個電池,叫氣體燃料電池。

最常見的電池,把一堆可以導電的化學物質裝起來,插入兩個不同材料的電極,用導線連接就會有電產生。以鉛酸蓄電池為例,硫酸水溶液就是導電的化學物質,把鉛放進其中,在鉛和硫酸接觸的地方(界面)會產生電,把氧化鉛放進去,界面也會有電,兩個界面電量有差異,即有電壓,用導線連起來電子就會從鉛流到氧化鉛,鉛就變成了氧化鉛,氧化鉛變成了氧化亞鉛。電量和化學量及反應過程相關聯。

這里最重要的概念:一是把一個導體插入導電的化學物質中界面會產生電位,同一種物質中插入不同的導體產生不同的電位。二是不同的電位相連接,在界面會發(fā)生反應。三是導電回路由電池和外接導線兩部分構成。電池外部在連接導線內是電子,電池內是離子。即導電過程由電子移動和離子移動共同完成。

電化學CO氣體傳感器是一個化學電池即CO燃料電池。其中:CO是提(供電)子的一極(工作電極),氧氣是獲得電子的一極,硫酸水溶液是電解質。和鉛酸蓄電池最大的不同是電極材料不同,電化學氣體傳感器(co)電極材料是氣體,鉛酸蓄電池是固體。電化學氣體傳感器的電極叫氣體電極。電化學CO氣體傳感器中,工作電極CO作為供電子的一極,只有CO和硫酸水溶液觸是無法進行的電子釋放、收集和傳導的。其一CO完成提供電子的過程需要條件,即在電催化條件下降低CO提供電子的難度。實踐中這個條件由多孔鉑電極(或其它電催化導電電極)提供。其二,CO提供的電子需要導體收集后傳導,也由多孔鉑電極完成。

同理,作為對電極的氧氣電極亦需要有多孔鉑電極協助獲得電子。鉑電極實際上是反應平臺。電化學傳感器傳感原理雖然簡單,但是實現可靠精確的傳感卻很難:其一需要鉑電極有穩(wěn)定的多孔結構,孔的數量足夠多,硫酸水溶液進到孔里,CO(或氧氣)也能進到孔里,在氣(CO)-固(pt)-液(硫酸水溶液中的水)共同接觸的位置即三相界面完成電子提供。因此,三相界面如何在硫酸長期浸泡、電化學反應沖擊、電泳驅動下保持穩(wěn)定,是可靠精確傳感的核心。其二,硫酸水溶液要穩(wěn)定,不揮發(fā),不吸水、不泄漏。任何硫酸水溶液的質量變化都會導致傳感器內部壓力的變化,進而引起三相界面的變化。其三、由封裝、材料物理特性決定的電極和硫酸水溶液接觸應力要穩(wěn)定不變。

目前電化學傳感器的主要問題基本源于上述因素。電化學傳感器最核心的技術及工藝之一是如何構建孔的物理結構合理穩(wěn)定可靠的電極,它和靈敏度、響應恢復、壽命、溫度特性密切相關。其二是封裝。電化學傳感器存在的問題如干燥條件下的失水失活、高濕條件下的吸水漏液,長期接觸被測氣體導致的中毒失活,電極孔結構解體導致的失活。體現在性能上是漏液、壽命短(相比其它原理)、體積大。體現在制造上表現為設計、工藝復雜、制造成本昂貴。

電化學傳感器的未來:明確的方向是電解液室溫固態(tài)化并以此為基礎實現MEMS化。實現固態(tài)化和MEMS化的電化學傳感器不僅能夠克服包括制造在內的大部分問題,而且可以激發(fā)新的應用,為企業(yè)帶來新的增長。此時的電化學傳感器將是高度一體化的,易集成的、小巧的電子系統(tǒng)。但是,這樣的結果仍然不能克服高濃度或被測氣體長期與傳感器接觸導致的傳感器性能變化。

(PI)D——光離子化檢測器

PID由紫外光源和氣室構成。紫外發(fā)光原理與日光燈管相同,只是頻率高,能量大。被測氣體到達氣室后,被紫外燈發(fā)射的紫外(光電)離產生電荷流,氣體濃度和電荷流的大小正相關,測量電荷流即可測得氣體濃度。

特殊氣體:物理形態(tài)多變、化學過程及反應生成物復雜多樣。包括無機氣體如氨氣。有機氣體如甲苯等。

前面介紹的各種氣體傳感器,對復雜氣體的檢測面臨巨大挑戰(zhàn)。如:對有機蒸氣的檢測,紅外吸收原理面臨著很難克服的困難:a、有機蒸氣由于分子量大的緣故,特征吸收波長較長,紅外吸收后能量變化小,通常靈敏度會很低。b、長分子鏈的有機蒸氣易吸附,會粘附在探測器上,破壞光傳輸。c、不能實現對voc總量的檢測。紅外系統(tǒng)若實現總量評價,則需要全光譜響應的濾光片、探測器和全光譜紅外光源,這樣的要求不僅難實現,即使實現,在全光譜范圍內,無機氣體、水的干擾將順理成章。而化學傳感器中半導體易被無機氣體、溫、濕度干擾,漂移,濃度分辯率低,雖然其檢測范圍寬、覆蓋氣體種類多,但仍僅適合在低端應用。在這樣的背景下,在工業(yè)現場voc檢測時PlD是較好的選擇。

相對其它傳感器plD最大的特點是只對很少的無機氣體,如氨氣、磷化氫等敏感。原因在于大部分的無機氣體有很高的電離能(大于11.7ev)。目前plD燈最高紫外幅射能量僅為11.7ev。因此,在石油化工園區(qū),PiD的響應可以認為是voc的響應。

PID(工作原理)

1、在真空玻璃腔內充入高純度稀有氣體如氬氣、氪氣。

2、用紫外透光片氟化鎂單晶將玻璃腔體密封,在此氟化鎂晶體對紫外光透明。

3、在玻璃腔外壁套上電極。

4、在氟化鎂窗口加上電極和電場,做為被測氣體氣室,這就是一個完整的可電離VOC的紫外燈。工作時在玻璃腔外加上高頻電場,紫外燈內的稀有氣體被外加電場電離出電子和離子,電子和離子復合時紫外光的形式向外幅射能量。紫外光穿過氟化鎂窗口到達氣室,氣室內被測氣體被紫外光電離產生電子和離子,電荷在電場作用下產生電流,就可以測到了。

PlD穩(wěn)定工作需要:

1、PID必須幅射足夠的能量才能電離被測氣體;

2、產生紫外光的高頻電場必須是穩(wěn)定的。

3、玻璃腔體內不能有雜質氣體,雜質氣體會導致附加電離,影響紫外發(fā)光效率。

4、紫外光譜是穩(wěn)定、均勻的。

5、紫外光到達氣室的傳輸是穩(wěn)定、均勻并不與構成氣室的金屬電極材料相互作用而產生重金屬沉積,重金屬在紫外幅射窗口沉積會阻擋紫外到達氣室。

這就要求:紫外燈充入的發(fā)光物質必須是氣體才能均勻發(fā)光并傳輸。腔體內不能有雜質氣體,以防止附加電離等。這些要求決定了發(fā)光氣體的選擇只能是稀有氣體。窗口材料則必須對紫外透明并具有穩(wěn)定的理化性質,事實上紫外窗口材料的選擇是極其有限的。這些限至條件最終也決定了PID應用的局限性。

為什么目前的PID不能測丙烷、乙烷、甲烷和大部分無機物

PID的本質是使被測物質電離后測電荷流,電離需要能量。目前的PID紫外幅射能量最常見的是8.3ev、9.8ev、10.6ev。而電離甲烷需要的能量為12.6ev,乙烷為11.56ev、丙烷為10.95ev、二氧化碳為13ev等。事實上,人們很想開發(fā)出能量更高的PID,但限至條件在于稀有氣體的種類極其有限,紫外波長(能量)是由稀有氣體本身的電子能級決定的,人類無法改變;另一個限至條件是特定波長的紫外光透光窗口材料,能透什么樣波長的紫外光取決于窗口材料的晶格常數,在目前的材料體系中選擇也極有限。人們雖然開發(fā)出11.7ev的發(fā)光體,但適合的窗口材料只有氟化鋰(LiF),而氟化鋰極易吸水,導致11.7ev的PID壽命只有兩個月。即目前的紫外燈由于輸出能量的限制,仍不能檢測甲烷等有較高電離能的物質。

PID為什么沒有選擇性?

如果我們選擇的PID的紫外幅射能量是10.6ev,就意味著被測環(huán)境中電離能小于10.6ev的所有氣體分子都會被電離,我們測到的電荷流是所有被電離氣體的電荷流的和,而不是某種氣體的電荷流。PID無選擇性是由此決定的。

PID在工作時,氣室內被電離的物質相遇時會復合還原,長鏈分子、灰塵等會沉積在窗口表面,除此,傳感器工作時產生的離子流轟擊氣室電極也會使重金屬沉積在窗口表面,這顯然會影響紫外光透過,而導致零點漂移、靈敏度降低,影響檢測結果。實際上除了PiD燈的制備技術、氣室設計,PID燈紫外透過窗口的清洗技術也是核心技術之一。

PID的未來

1、PiD作為理想的非放射性離子源會永遠存在;

2、提高PID燈內充氣前的真空度以及填充氣體純度以提高發(fā)光效率和發(fā)光穩(wěn)定性;

3、開發(fā)新的窗口材料及加工精度以改善透光率、出射光均勻性、封裝質量、以及穩(wěn)定性和壽命;

4、預防色散導致窗口的重金屬沉積,延長壽命;

5、防止大分子有機物、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論