2024屆河北省保定市淶水縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆河北省保定市淶水縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆河北省保定市淶水縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆河北省保定市淶水縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆河北省保定市淶水縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆河北省保定市淶水縣數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,圓錐的底面半徑OB=6cm,高OC=8cm,則這個圓錐的側(cè)面積是()A.30 B.30π C.60π D.48π2.向空中發(fā)射一枚炮彈,第秒時的高度為米,且高度與時間的關(guān)系為,若此炮彈在第秒與第秒時的高度相等,則在下列時間中炮彈所在高度最高的是()A.第秒 B.第秒 C.第秒 D.第秒3.如圖,點A、B、C在⊙O上,CO的延長線交AB于點D,∠A=50°,∠B=30°,∠ACD的度數(shù)為()A.10° B.15° C.20° D.30°4.如圖,Rt△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點與BC的中點D重合,折痕為PQ,則△PQD的面積為()A. B. C. D.5.二次函數(shù)圖象如圖所示,下列結(jié)論:①;②;③;④;⑤有兩個相等的實數(shù)根,其中正確的有()A.1個 B.2個 C.3個 D.4個6.等腰直角△ABC內(nèi)有一點P,滿足∠PAB=∠PBC=∠PCA,若∠BAC=90°,AP=1.則CP的長等于()A. B.2 C.2 D.37.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°8.海南漁民從事海洋捕撈已有上千年歷史,南海是海南漁民的“祖宗?!保壳昂D瞎灿屑s25萬人從事漁業(yè)生產(chǎn).這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.2.5×106人 B.25×104人 C.2.5×104人 D.2.5×105人9.如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為300,看這棟高樓底部C的俯角為600,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為()A.40m B.80m C.120m D.160m10.如圖,是的直徑,弦于,連接、,下列結(jié)論中不一定正確的是()A. B. C. D.11.一個圓錐的底面直徑是8cm,母線長為9cm,則圓錐的全面積為()A.36πcm2 B.52πcm2 C.72πcm2 D.136πcm212.若△ABC∽△ADE,若AB=6,AC=4,AD=3,則AE的長是()A.1 B.2 C.1.5 D.3二、填空題(每題4分,共24分)13.如圖,ΔABC內(nèi)接于⊙O,∠B=90°,AB=BC,D是⊙O上與點B關(guān)于圓心O成中心對稱的點,P是BC邊上一點,連結(jié)AD、DC、AP.已知AB=4,CP=1,Q是線段AP上一動點,連結(jié)BQ并延長交四邊形ABCD的一邊于點R,且滿足AP=BR,則14.已知方程的兩實數(shù)根的平方和為,則k的值為____.15.如圖,是某同學(xué)制作的一個圓錐形紙帽的示意圖,則圍成這個紙帽的紙的面積為______.16.如圖,在平面直角坐標系中,已知點E(﹣4,2),F(xiàn)(﹣1,﹣1).以原點O為位似中心,把△EFO擴大到原來的2倍,則點E的對應(yīng)點E'的坐標為_____.17.如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數(shù)為_____.18.化簡:=______.三、解答題(共78分)19.(8分)計算.20.(8分)如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點E,AB=15,D是⊙O上的點,DC⊥BM,與BM交于點C,⊙O的半徑為R=1.(1)求BE的長.(2)若BC=15,求的長.21.(8分)今年我縣為了創(chuàng)建省級文明縣城,全面推行中小學(xué)?!吧鐣髁x核心價值觀”進課堂.某校對全校學(xué)生進行了檢測評價,檢測結(jié)果分為(優(yōu)秀)、(良好)、(合格)、(不合格)四個等級.并隨機抽取若干名學(xué)生的檢測結(jié)果作為樣本進行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計表和統(tǒng)計圖.請根據(jù)統(tǒng)計表和統(tǒng)計圖提供的信息,解答下列問題:(1)本次隨機抽取的樣本容量為__________;(2)統(tǒng)計表中_________,_________.(3)若該校共有學(xué)生5000人,請你估算該校學(xué)生在本次檢測中達到“(優(yōu)秀)”等級的學(xué)生人數(shù).22.(10分)經(jīng)過點A(4,1)的直線與反比例函數(shù)y=的圖象交于點A、C,AB⊥y軸,垂足為B,連接BC.(1)求反比例函數(shù)的表達式;(2)若△ABC的面積為6,求直線AC的函數(shù)表達式;(3)在(2)的條件下,點P在雙曲線位于第一象限的圖象上,若∠PAC=90°,則點P的坐標是.23.(10分)如圖,三角形是以為底邊的等腰三角形,點、分別是一次函數(shù)的圖象與軸、軸的交點,點在二次函數(shù)的圖象上,且該二次函數(shù)圖象上存在一點使四邊形能構(gòu)成平行四邊形.(1)試求、的值,并寫出該二次函數(shù)表達式;(2)動點沿線段從到,同時動點沿線段從到都以每秒1個單位的速度運動,問:①當(dāng)運動過程中能否存在?如果不存在請說明理由;如果存在請說明點的位置?②當(dāng)運動到何處時,四邊形的面積最?。看藭r四邊形的面積是多少?24.(10分)為弘揚中華民族傳統(tǒng)文化,某市舉辦了中小學(xué)生“國學(xué)經(jīng)典大賽”,比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.(1)小華參加“單人組”,他從中隨機抽取一個比賽項目,恰好抽中“論語”的概率是多少?(2)小明和小紅組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次.則恰好小明抽中“唐詩”且小紅抽中“宋詞”的概率是多少?小明和小紅都沒有抽到“三字經(jīng)”的概率是多少?請用畫樹狀圖或列表的方法進行說明.25.(12分)已知一個二次函數(shù)的圖象經(jīng)過點、和三點.(1)求此二次函數(shù)的解析式;(2)求此二次函數(shù)的圖象的對稱軸和頂點坐標.26.如圖,在中,,為邊上的中線,于點E.(1)求證:;(2)若,,求線段的長.

參考答案一、選擇題(每題4分,共48分)1、C【解題分析】試題分析:∵它的底面半徑OB=6cm,高OC=8cm.∴BC==10(cm),∴這個圓錐漏斗的側(cè)面積是:πrl=π×6×10=60π(cm2).故選C.考點:圓錐的計算.2、C【分析】根據(jù)二次函數(shù)圖像的對稱性,求出對稱軸,即可得到答案.【題目詳解】解:根據(jù)題意,炮彈在第秒與第秒時的高度相等,∴拋物線的對稱軸為:秒,∵第12秒距離對稱軸最近,∴上述時間中,第12秒時炮彈高度最高;故選:C.【題目點撥】本題考查了二次函數(shù)的性質(zhì)和對稱性,解題的關(guān)鍵是掌握二次函數(shù)的對稱性進行解題.3、C【分析】根據(jù)圓周角定理求得∠BOC=100°,進而根據(jù)三角形的外角的性質(zhì)求得∠BDC=70°,然后根據(jù)外角求得∠ACD的度數(shù).【題目詳解】解:∵∠A=50°,

∴∠BOC=2∠A=100°,

∵∠B=30°,∠BOC=∠B+∠BDC,

∴∠BDC=∠BOC-∠B=100°-30°=70°,∴∠ACD=70°50°=20°;故選:C.【題目點撥】本題考查了圓心角和圓周角的關(guān)系及三角形外角的性質(zhì),圓心角和圓周角的關(guān)系是解題的關(guān)鍵.4、D【分析】由折疊的性質(zhì)可得AQ=QD,AP=PD,由勾股定理可求AQ的長,由銳角三角函數(shù)分別求出AP,HQ的長,即可求解.【題目詳解】解:過點D作DN⊥AC于N,∵點D是BC中點,∴BD=3,∵將△ABC折疊,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面積=△APQ的面積=××=,故選:D.【題目點撥】本題考查了翻折變換,勾股定理,三角形面積公式,銳角三角函數(shù),求出HQ的長是本題的關(guān)鍵.5、D【分析】根據(jù)圖象與x軸有兩個交點可判定①;根據(jù)對稱軸為可判定②;根據(jù)開口方向、對稱軸和與y軸的交點可判定③;根據(jù)當(dāng)時以及對稱軸為可判定④;利用二次函數(shù)與一元二次方程的聯(lián)系可判定⑤.【題目詳解】解:①根據(jù)圖象與x軸有兩個交點可得,此結(jié)論正確;②對稱軸為,即,整理可得,此結(jié)論正確;③拋物線開口向下,故,所以,拋物線與y軸的交點在y軸的正半軸,所以,故,此結(jié)論錯誤;④當(dāng)時,對稱軸為,所以當(dāng)時,即,此結(jié)論正確;⑤當(dāng)時,只對應(yīng)一個x的值,即有兩個相等的實數(shù)根,此結(jié)論正確;綜上所述,正確的有4個,故選:D.【題目點撥】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系、二次函數(shù)與一元二次方程,掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.6、B【分析】先利用定理求得,再證得,利用對應(yīng)邊成比例,即可求得答案.【題目詳解】如圖,∵∠BAC=90°,AB=AC,∴,,設(shè),則,如圖,∴,∴,∴,∴,∵,∴,∴,故選:B【題目點撥】本題考查了相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),熟練運用相似三角形的判定和性質(zhì)是本題的關(guān)鍵.7、C【解題分析】根據(jù)扇形的面積公式列方程即可得到結(jié)論.【題目詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【題目點撥】本題考了扇形面積的計算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計算公式:扇形的面積=.8、D【分析】對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).【題目詳解】25萬人=2.5×105人.故選D.【題目點撥】此題考查了科學(xué)記數(shù)法的表示方法,科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、D【分析】過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【題目詳解】解:過A作AD⊥BC,垂足為D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD?tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD?tan60°=120×=120m,∴BC=BD+CD=m.故選D.【題目點撥】本題考查解直角三角形的應(yīng)用-仰角俯角問題.10、C【分析】根據(jù)垂徑定理及圓周角定理對各選項進行逐一分析即可.【題目詳解】解:∵CD是⊙O的直徑,弦AB⊥CD于E,

∴AE=BE,,故A、B正確;

∵CD是⊙O的直徑,

∴∠DBC=90°,故D正確.

故選:C.【題目點撥】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.11、B【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算出圓錐的側(cè)面積,然后計算側(cè)面積與底面積的和.【題目詳解】解:圓錐的全面積=π×42+×2π×4×9=52π(cm2).故選:B.【題目點撥】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、B【分析】根據(jù)相似三角形的性質(zhì),由,即可得到AE的長.【題目詳解】解:∵△ABC∽△ADE,∴,∵AB=6,AC=4,AD=3,∴,∴;故選擇:B.【題目點撥】本題考查了相似三角形的性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì).二、填空題(每題4分,共24分)13、1或12【題目詳解】解:因為ΔABC內(nèi)接于圓,∠B=90°,AB=BC,D是⊙O上與點B關(guān)于圓心O成中心對稱的點,∴AB=BC=CD=AD,∴ABCD是正方形∴AD//BC①點R在線段AD上,

∵AD∥BC,

∴∠ARB=∠PBR,∠RAQ=∠APB,

∵AP=BR,

∴△BAP≌ABR,

∴AR=BP,

在△AQR與△PQB中,∵∠RAQ=∠QPB∵ΔAQR?ΔPQB∴BQ=QR∴BQ:QR=1:1②點R在線段CD上,此時△ABP≌△BCR,

∴∠BAP=∠CBR.

∵∠CBR+∠ABR=90°,

∴∠BAP+∠ABR=90°,

∴BQ是直角△ABP斜邊上的高,∴BQ=∴QR=BR-BQ=5-2.4=2.6,∴BQ:QR=12故答案為:1或1213【題目點撥】本題考查正方形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,勾股定理,中心對稱的性質(zhì).解答本題的關(guān)鍵是熟練掌握判定兩個三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.14、3【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,得出和的值,然后將平方和變形為和的形式,代入便可求得k的值.【題目詳解】∵,設(shè)方程的兩個解為則,∵兩實根的平方和為,即=∴解得:k=3或k=-11∵當(dāng)k=-11時,一元二次方程的△<0,不符,需要舍去故答案為:3【題目點撥】本題考查根與系數(shù)的關(guān)系,注意在最后求解出2個值后,有一個值不符需要舍去.15、【分析】根據(jù)已知得出圓錐的底面半徑為10cm,圓錐的側(cè)面積=π×底面半徑×母線長,即可得出答案.【題目詳解】解:底面圓的半徑為10,則底面周長=10π,

側(cè)面面積=×10π×30=300πcm1.

故答案為:300πcm1.【題目點撥】本題主要考查了圓錐的側(cè)面積公式,掌握圓錐側(cè)面積公式是解決問題的關(guān)鍵,此問題是中考中考查重點.16、(﹣8,4),(8,﹣4)【分析】根據(jù)在平面直角坐標系中,位似變換的性質(zhì)計算即可.【題目詳解】解:以原點O為位似中心,把△EFO擴大到原來的2倍,點E(﹣4,2),∴點E的對應(yīng)點E'的坐標為(﹣4×2,2×2)或(4×2,﹣2×2),即(﹣8,4),(8,﹣4),故答案為:(﹣8,4),(8,﹣4).【題目點撥】本題考查的是位似變換的性質(zhì),在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或-k.17、60°【解題分析】解:∵BD是⊙O的直徑,∴∠BCD=90°(直徑所對的圓周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的兩個銳角互余),∴∠A=∠D=60°(同弧所對的圓周角相等);故答案是:60°18、.【解題分析】試題解析:原式故答案為三、解答題(共78分)19、-1【分析】直接利用絕對值的性質(zhì)以及負指數(shù)冪的性質(zhì)分別化簡得出答案.【題目詳解】解:原式=2﹣(2﹣2)﹣12=2﹣2+2﹣12=﹣1.【題目點撥】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.20、(1)1﹣15;(2)15π【分析】(1)連接OE,過O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的長,進而求得EB的長.(2)連接OD,則在直角三角形ODQ中,可求得∠QOD=60°,過點E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,則得出的長度.【題目詳解】解:(1)連接OE,過O作OF⊥BM于F,則四邊形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)連接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,過點E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π?60=15π.【題目點撥】本題考查了直角三角形的性質(zhì),弧長的計算、矩形的性質(zhì)以及垂徑定理,是基礎(chǔ)知識要熟練掌握.21、(1)100;(2)30,0.3;(3)1500人【分析】(1)用B組的人數(shù)除以B組的頻率可以求得本次的樣本容量;(2)用樣本容量×A組的頻率可求出a的值,用C組的頻數(shù)除以樣本容量可求出b的值;(3)用5000×A組的頻率可求出在本次檢測中達到“(優(yōu)秀)”等級的學(xué)生人數(shù).【題目詳解】解:(1)本次隨機抽取的樣本容量為:35÷0.35=100,故答案為:100;(2)a=100×0.3=30,b=30÷100=0.3,故答案為:30,0.3;(3)5000×0.3=1500(人),答:達到“(優(yōu)秀)”等級的學(xué)生人數(shù)是1500人.【題目點撥】本題考查條形統(tǒng)計圖、統(tǒng)計表、樣本容量、用樣本估計總體,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.22、(1)反比例函數(shù)的表達式為y=(2)直線AC的函數(shù)表達式為y=x﹣1;(3)(,8).【分析】(1)將點A坐標代入反比例函數(shù)表達式中,即可得出結(jié)論;

(2)先求出AB,設(shè)出點C的縱坐標,利用△ABC的面積為6,求出點C縱坐標,再代入反比例函數(shù)表達式中,求出點C坐標,最后用待定系數(shù)法求出直線AC的解析式;

(3)先求出直線AP的解析式,再和反比例函數(shù)解析式聯(lián)立求解即可得出結(jié)論.【題目詳解】解:(1)∵點A(4,1)在反比例函數(shù)y=的圖象上,∴k=4×1=4,∴反比例函數(shù)的表達式為y=;(2)設(shè)點C的縱坐標為m,∵AB⊥y軸,A(4,1),∴AB=4,∵△ABC的面積為6,∴AB×(1﹣m)=6,∴m=﹣2,由(1)知,反比例函數(shù)的表達式為y=,∴點C的縱坐標為:﹣2,∴點C(﹣2,﹣2),設(shè)直線AC的解析式為y=k'x+b,將點A(4,1),C(﹣2,﹣2)代入y=k'x+b中,,∴,∴直線AC的函數(shù)表達式為y=x﹣1;(3)由(2)知直線AC的函數(shù)表達式為y=x﹣1,∵∠PAC=90°,∴AC⊥AP,∴設(shè)直線AP的解析式為y=﹣2x+b',將A(4,1)代入y=﹣2x+b'中,﹣8+b'=1,∴b'=9,∴直線AP的解析式為y=﹣2x+9①,由(1)知,反比例函數(shù)的表達式為y=②,聯(lián)立①②解得,(舍)或,∴點P的坐標為(,8),故答案為:(,8).【題目點撥】考查了待定系數(shù)法,三角形的面積公式,方程組的解法,用方程或方程組的思想解決問題是解本題的關(guān)鍵.23、(1),;(2)①當(dāng)點運動到距離點個單位長度處,有;②當(dāng)點運動到距離點個單位處時,四邊形面積最小,最小值為.【分析】(1)根據(jù)一次函數(shù)解析式求出A和C的坐標,再由△ABC是等腰三角形可求出點B的坐標,根據(jù)平行四邊形的性質(zhì)求出點D的坐標,利用待定系數(shù)法即可得出二次函數(shù)的表達式;(2)①設(shè)點P運動了t秒,PQ⊥AC,進而求出AP、CQ和AQ的值,再由△APQ∽△CAO,利用對應(yīng)邊成比例可求出t的值,即可得出答案;②將問題化簡為△APQ的面積的最大值,根據(jù)幾何關(guān)系列出關(guān)于時間的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),求出函數(shù)的最大值,即求出△APQ的面積的最大值,進而求出四邊形PDCQ面積的最小值.【題目詳解】解:(1)由,令,得,所以點;令,得,所以點,∵是以為底邊的等腰三角形,∴點坐標為,又∵四邊形是平行四邊形,∴點坐標為,將點、點代入二次函數(shù),可得,解得:,故該二次函數(shù)解析式為:.(2)∵,,∴.①設(shè)點運動了秒時,,此時,,,∵,∴,,∴,∴,即,解得:.即當(dāng)點運動到距離點個單位長度處,有.②∵,且,∴當(dāng)?shù)拿娣e最大時,四邊形的面積最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論