理特咨詢:2023年工業(yè)元宇宙報(bào)告(英文版)_第1頁(yè)
理特咨詢:2023年工業(yè)元宇宙報(bào)告(英文版)_第2頁(yè)
理特咨詢:2023年工業(yè)元宇宙報(bào)告(英文版)_第3頁(yè)
理特咨詢:2023年工業(yè)元宇宙報(bào)告(英文版)_第4頁(yè)
理特咨詢:2023年工業(yè)元宇宙報(bào)告(英文版)_第5頁(yè)
已閱讀5頁(yè),還剩221頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

REPORT

TheIndustrial

Metaverse

Makingtheinvisiblevisibleto

drivesustainablegrowth

2023

“WhatamI?

Thedata?Theprocessthatgenerates

it?The

relationships

betweenthe

numbers?”

—GregEgan,sciencefictionauthor,

PermutationCity

3

BlueShift/REPORT003

TheIndustrialMetaverse

Makingtheinvisiblevisibletodrive

sustainablegrowth

Authors

Dr.AlbertMeige,DirectorofBlueShift,ArthurD.LittleRickEagar,PartnerEmeritus,ArthurD.Little

Contributors

EnginBeken,Partner,ArthurD.LittleMartinGlaumann,Partner,ArthurD.Little

BerndSchreiber,Partner,ArthurD.LittleArnaudSiraudin,AssociateDirector,ArthurD.LittleJaimeCapdevila,Consultant,ArthurD.Little

OliviaDehlin,BusinessAnalyst,ArthurD.Little

Artist-in-residence

LeoBlondel,scientist

CONTENT-CONTENT-CONTENT-

CONTENT-

Executivesummary

6

Preamble

8

1.Whatisthecontextforthe

IndustrialMetaverse?

12

2.WhatdoesIndustrialMetaverse

reallymean?

22

Interlude:Maketheinvisiblevisible32

3.WhereisIndustrialMetaverse

technologytoday?

36

4.Whatisthepotentialvalueofthe

IndustrialMetaversetobusiness?50

5.Whatshouldcompaniesdo?60

Appendix#1:Technologyreadinesslevels68

Appendix#2:Selectedcompanyprofiles72

Appendix#3:IndustrialMetaverse

usecases

80

5

BlueShift/REPORT003

Executive

summary

Inbusinessandpopularmedia,theMetaversehypewaveisalreadyenteringitsdisillusionmentphase,supersededbyartificialintel-ligence(AI).YettheIndustrialMetaverse,perhapslessexcitinginthepopularimagination,hasneverreallybeenpartofthehype.IsthiswheretherealvalueoftheMetaversewillberealized?

TherearedifferingviewsaboutwhattheIndustrialMetaverseisversustheMetaverseasawhole,andhowitdiffersfromexistingdigitaltwintechnologiesnormallyconsideredunderIndustry4.0.InthisReport,weprovideanevidence-basedperspective,assessingcurrenttechnologystatus,summarizingusecasesandmarketpotential,andoffering

recommendationsforcompaniesgoingforward.

WeconcludethattheIndustrialMetaverseisbestdefinedasa“con-nectedwhole-systemdigitaltwinwithfunctionalitiestointeract

withtherealsysteminitsenvironment,allowingdecisionmakerstobetterunderstandthepastandforecastthefuture.”Assuch,theIndustrialMetaverseisafurtherevolutionofdiscretedigitaltwintechnologiesthatalreadyexisttoday(e.g.,forfactoriesorplants)butprogressivelyextendedtoultimatelyrepresentanend-to-end,real-worldindustrialsystem,includingexternalelementsoutsidethecompanyandtheenvironmentwithinwhichitoperates.The

IndustrialMetaversethusprovidesatransformativetooltoelevatetheuseofdigitalsimulationtechnologytothelevelofstrategic

decision-making.Thisisimportantfordealingwiththeincreasingcomplexityandacceleratedpaceofdevelopmentcompanyleadersfaceandisespeciallyvaluablefordevelopingeffectivesustainablegrowthstrategies.

6

BlueShift/REPORT003

TheIndustrial

Metaverse

providesa

transformative

tooltoelevate

theuseofdigital

simulation

technologytothelevelofstrategicdecision-making.

Whileachievingafull-scale,connected,end-to-end,whole-system

digitaltwinmaybefiveormoreyearsaway—especiallyduetodevel-opmentgapsinconnectivity,computingcapacity,andscaled-upAI—

intermediatestepsarepossibleintheshortterm,andmanyIndustrialMetaverseusecasesalreadyexist.Thesecanbegroupedintofourcate-gories:(1)optimization(e.g.,digitaltwinsandaugmentedreality[AR]foroperations/maintenanceefficiencyandproductivityimprovements);

(2)training(e.g.,virtual/remotetrainingtools);(3)technicaltools(e.g.,design/construction/maintenancedigitaltools);and(4)managementtools(e.g.,virtualmeeting/collaboration/interactiontools).Thenextdevelopmentstepswillincludeextendingdigitalsimulationsbeyonddiscretephysicalassetstowardmultipleconnectedassets,internalprocesses,andfunctions,andfinallyextendedupstreamanddown-streamactivitiesinvolvingtheentireindustrialsystem.

WeestimatethecurrentIndustrialMetaversemarkettobearound

US$100-$150billion,withaconservative2030forecastofaround

$400billionbutwithapotentialupsideofmorethan$1trillion.Thebenefitstobusinessintermsofproductivitycouldbemultiple

double-digitpercentages.ThegrowthoftheIndustrialMetaverse

willnotnecessarilydependonwidespreadadoptionoftheconsumerMetaversebecauseitsutilityandvalueforbusinessdependmoreonthequalityofcomplexsystemsimulationandlessonfeaturessuchasimmersivityandhuman-machineinterfacetechnology.Ourcon-clusionisthattheIndustrialMetaversehaselementsofbothevolu-tionandrevolution:evolutionintermsofthepotentialforfurtherstepwisepenetrationofIndustry4.0technologies,andrevolutionintermsofhowtheconvergenceofthesetechnologies—especiallyconnectivity,AI,complexsystemssimulation,andvisualizationpow-eredbyincreasingcomputingcapacity—hasthepotentialtotrans-formbusinessproductivity.

CompaniesneedtoconsidertheirstrategyfortheIndustrial

Metaverseinthecontextoftheirbroaderdigitalizationstrategy,

whilealsoconsideringimplementationbarriers.Werecommendthatcompaniesconsiderfourstepstoreapthebenefits:

1.Reviewstrategy.Developaclearpictureofthedigitalizationstrategy,journey,andcurrentposition.

2.Identifyopportunities.Discovervalue-addingIndustrialMetaverseopportunitiesanddeveloparoadmap.

3.Implementpilotprojects.Adoptatest-and-learnapproachandmanagechangeproactively.

4.Buildandaligntheecosystem.Createawin-winsituationwithecosystempartners.

7

8

BlueShift/REPORT003

Preamble

WhenIwasachild,10or11yearsold,Irememberthinkingthat

ifitwerepossibleto“scan”thepositionsandspeedsofallthe

atomsandmoleculesthatmakeupmybodyatagivenmoment

andputallthisinformationinacomputercapableofsimulatingallthephysico-chemicalreactionsthatgoverntheuniverse,thenthisdigitalcopywouldnotbedistinguishablefromtheoriginal.

Therewouldthenbetwoof“me”—theoriginal,basedoncarbonchains,andthedigitalcopy,whosesubstratewouldbesilicon.Thecopywouldbeasconsciousastheoriginal,anditwouldbejustasconvincedofbeingme.

BlueShift/REPORT003

Therewouldthenbetwoof“me”—theoriginal,basedoncarbonchains,andthedigital

copy,whose

substratewould

besilicon.

Ididn’tknowityet,butIhadamaterialisticapproachtoconscious-ness.Ididn’tknowaboutHeisenberg’suncertaintyprinciple,whichprohibitsknowingwithinfiniteprecisionthepositionandthespeedofthesameparticle.Thus,theperfectscanwasthereforenotpos-sible.Nottomentionthecomputingpowerrequiredtorunsuchasimulationisstillquitefarfrombeingavailable.However,withoutknowingit,Ihadconceptualizedwhattheindustrywouldonedaycall“digitaltwins.”

Manyyearslater,myfriendDavidLouapre,ScientificDirectoratUbisoftandcreatorofthepopular“Scienceétonnante”YouTubechannel,recommendedthatIreadthesciencefictionbook

PermutationCitybyAustralianauthorGregEgan,releasedin1994.

ImmersingmyselfinPermutationCity,thedigitaltwinstoryofmy

childhoodsuddenlycamebacktomelikeaProustdigitalmadeleine.Becauseindeed,oneofthekeyelementsoftheplotisbasedon

thefactthatinthenearfuture,around2050,itbecamepossibletouploadone’sconsciousnesstoacomputer.Theproblemisthatin

orderforaperson’sdigitaltwintobeabletointeractwithapersonintherealworld,theirsimulationmustrunfastenough—thatis,

enoughcomputingpowermustbeavailable.Ifthecomputingpowerisinsufficient,thetimeofthesimulatedperson,althoughremainingsubjectivelyunchanged,passesmoreslowlythantherealtime.Andif,onthecontrary,thecomputingpowerisexcessive,thesimulatedworldunfoldsfasterthantherealworld.Itthenbecomespossibletoforeseethefuture.

9

BlueShift/REPORT003

TheseareexactlytheobjectivesthatweseektoachievewiththeIndustrialMetaverse.TheIndustrialMetaverseistheextensionof

whathasbeencalled“Industry4.0”foratleastadecade.Itisthe

digitaltwinofacomplexsystemthatallowsyoutoprojectyourselfthroughtimeandimmerseyourselfinspace.Itmakesitpossibletonumericallyanticipatethefutureconsequencesofadecisionoraneventonacomplexsystem—whateverthissystem:amachine,afactory,acompany,avaluechain.

AswewillseeinthisReport,theIndustrialMetaversehasthreemajoradvantagesoverIndustry4.0:

1.Modelingandsimulationofcomplexsystems—approachesthatwerestillpartoftheacademicworld10yearsagoandthatarenowchangingthegameintheindustrialworld—makeit

possibletocreatevirtualwhat-ifscenarios.Theaccessibledataisnolongerjustdatafromthepastandthepresent,butisnowalsodataaboutthefuture.Itbecomespossibletoprojectin

time.

2.ThankstoAIandvirtualreality(VR),itfinallybecomespossibletobringoutmeaningandvisualizetheindustrialsystemthat

mustbemanagedandthusovercomethelimitsofthehumanbrain,whichisnotwelladaptedtoapprehendacomplexsystemanditsemergences—thefamousbutterflyeffect,resulting

fromadecisionoranevent.

3.Interoperabilityandinterconnectionbetweenthephysicalindustrialsystem,itsdigitaltwin,andthevariousstakeholdersnow,moreandmore,makeitpossibletomanageitoptimally.

10

11

BlueShift/REPORT003

ThankstotheIndustrial

Metaverse,ithasbecomepos-

sibletomaketheinvisiblevis-

ibletodrivesustainablegrowth.Whileensuringeconomicgrowth,webelievethattheIndustrial

Metaversewillbepartofthe

solutiontotheclimatechallenge.

And,actually,itisinterestingtonotethatananagramofMétaversIndustriel(IndustrialMetaverse)is:

verdures

militantes/

militant

greenery

Thisisquiteintriguingand,asalways,

anagramsmoveinmysteriousways.

–AlbertMeige,PhD

CHAPTER

12

1

13

WHATISTHE

CONTEXTFOR

THEINDUSTRIAL

METAVERSE?

14

BlueShift/REPORT003

1Whatisthecontext

fortheIndustrial

Metaverse?

IndustrialMetaverseisatermcom-

monlyappliedtothesetofMetaverseapplicationsdesignedforbusiness

users.InourpreviousReport,“

The

Metaverse,BeyondFantasy

,”welookedattheMetaverseasawhole,itsappli-cations,underlyingtechnologies,andimpact.InthisReport,wefocusspe-

cificallyonMetaverseapplicationsforbusinessesandenterprises,thereforeexcludingapplicationsandexperi-

encesforindividualconsumers(e.g.,

gaming,entertainment,andsocial

interaction),althoughthereisan

overlapwhereconsumersinteractwithbusinessesatthecustomerinterface.

BlueShift/REPORT003

Industry4.0

Cyber-physicalsystems

Industry2.0

Massproduction

19th/20thcentury

Industry3.0

Automation

Industry1.0

Mechanization

18th/19thcentury

2010sonward

1960sonward

Today,theIndustrialMetaverseasaconceptisbothcommonly

understoodand,atthesametime,variouslyinterpreted.Business

managersarealreadywell-versedinthepotentialofdigitalization,andmanyarealreadywellalongthedigitaltransformationjourney.Digitalmodelsofphysicalproductsandassets,increasedconnec-tivity,andnewvisualizationsareverymuchpartofthisjourney.So

whatdoestheIndustrialMetaversereallybringinaddition?Howsig-nificantisthecreationofanimmersivevirtualenvironmenttorun-

ningatypicalbusiness?IsIndustrialMetaversereallyrevolutionary,orisitinfactmoreevolutionary?

InthisReport,weexaminethebackgroundandcontextoftheIndus-trialMetaverse,definewhatitmeans,setoutaconceptualarchitec-ture,exploreitskeytechnologicalbuildingblocks,assessitsvalue

tobusinessbothnowandinthefuture,andproposehowbusinessesshouldgoaboutexploitingitspotential.TheReportisbasedon

in-houseresearch,clientexperience,andcontributionsfrominterviewswithexpertsacrossindustryandacademia.

Industry4.0&theIndustrial

Metaversetoday

TheIndustrialMetaverseisfrequentlycitedasthenextphaseof

evolutionafterIndustry4.0,movingfromcyber-physicalsystemstoafullyvirtualizedworld(seeFigure1).

Fig1—TheIndustrialMetaverseisoftenseenasthenextphaseofevolutionafterIndustry4.0

Industrial

Metaverse

Virtualization

Todayonward

Source:ArthurD.Little

15

BlueShift/REPORT003

COGNITIVE

VIRTUAL

CONNECTED

VALUE-ADD

Bigdata/

advancedanalytics

Blockchain

Connectedthings

Augmentedreality(AR)

Additivemanufacturing/3Dprinting

Cognitive,self-learningsystems/bots

Collaborative,smartmachines&robots

Cyber-physical

systems/virtualized

networks

Virtualmodeling/simulation

Integratedecosystems/decentral(mobile)

valueadd

Smartenergysystems

Autonomous

transportsystems

Theterm“Industry4.0”(ortheFourthIndustrialRevolution)was

popularizedaroundadecadeagoandreferstothedeployment

ofawiderangeoftechnologieswiththepotentialtotransform

industrythroughnewcognitivetools,connectivity,virtualmodeling(includingdigitaltwins),collaborationtools,andnewtechniquesformanufacturingandsupplychain,includingadvancedroboticsandblockchain(seeFigure2).

Ofthesevarioustechnologies,someareespeciallyrelevantfortheIndustrialMetaverse.TheseincludeAI,connectivitytechnologies,virtualizationandsimulationtechnologies,andcollaboration/

interactiontools(seeChapter3forfurtherexplorationofkeytechnologicalbuildingblocks).

Industry4.0technologiesalreadyprovidesignificantbenefitstothosecompaniesthathavesuccessfullydeployedthemtohelptransformtheirbusinesses.Forexample,accordingtodatafromcaseexamplesinArthurD.Little’s(ADL’s)OperationalExcellenceDatabase,thesebenefitsareoftendouble-digitinscale:

-15%-30%reductionsinoperationalcapitaldeployed

-10%-30%reductionsinsupplychaincosts

-30%increasedutilizationofproductioncapacity

-10%-40%reductionsinmaintenancecosts

Fig2—Industry4.0buildingblocks

HUMAN-CENTERED

Collectiveintelligence/crowdsourcing

Virtualworkplace/

workplace4.0

E-learning/massiveopen

onlinecourse(MooC)

TechnologiesrelevanttoIndustrialMetaverse

Source:ArthurD.Little;OperationalExcellenceDatabase,2020

16

BlueShift/REPORT003

MakingprogressonimplementationofdigitalandIndustry4.0technologiesischallengingforanylargecompany.

However,overallprogressinachievingIndustry4.0maturitystillhasalongwaytogo.Forexample,a2020surveyof70Germancompa-niesbyAcatechthatmeasuredprogressagainstasix-stageIndustry4.0maturityscaleshowedthatthevastmajorityoffirms(80%)werestillinthesecondstage(connectivity),withonlyaminority(4%)

havingprogressedtowardthenextstageofcreatingdigitaltwins(visibility).1Nocompanieshadprogressedtowardthelastthree

maturitystages,whichinvolvedmodelingcomplexinteractions,sim-ulatingfuture-orientedwhat-ifscenarios,orcreatingself-governingsystems.AswewillshowlaterinthisReport,thesefunctionsarekeypartsofwhattheIndustrialMetaversepromisestodeliver.

Itiswell-knownthatmakingprogressonimplementationofdigitalandIndustry4.0technologiesischallengingforanylargecompany.Thisisbecauseittypicallyinvolvesfundamentaltransformationofthewaythebusinessoperates;itisnotpossibletosimply“bolton”thesenewtechnologiestoexistingassets,businessprocesses,andwaysofworking.Typicalchallengesinclude:

-Highinitialinvestment,especiallyindatagatheringandmanagement

-LimitationsimposedbylegacyITsystems

-Areluctancetoembracetheextentoftherequiredbusinesstransformation

-Difficultiesinrealizingthetargetedbusinessreturnsfromdigitalinvestmentswithinshort-enoughtimescales

TheAcatechstudyalsohighlightedcommonbarrierstoward

Industry4.0progress,including:

-Alackofcommonstandards

-Fragileinformationsystemintegration

-Areluctancetoengageininterdepartmentalcooperation

-Inadequateemployeeinvolvementinchangeprocesses

IfweacceptthattheIndustrialMetaverseisafurtherstageof

evolutionbeyondIndustry4.0,thenitfollowsthatitssuccessful

implementationatscalewillalsorequireovercomingthesecommonbarrierstowardIndustry4.0implementation.

1Schuh,Günther,etal.“UsingtheIndustrie4.0MaturityIndexinIndustry:CurrentChallenges,CaseStudiesandTrends.”Acatech,GermanNationalAcademyofScienceandEngineering,2020.

17

BlueShift/REPORT003

Complexity

Thecomplexityofindustrialsystemshasmushroomed…

Cognition

…whichchallengesthe

capacityoftheunaided

humanbrain…

Whythechangingbusinesslandscapeisleadingtounmetneeds

ItisusefultoconsiderhowthebusinesslandscapehastransformedsincetheearlydaysofIndustry4.0.Today,aswellastheconstantneedtofurtherimproveproductivity,oneofthebiggestchallengesfacingbusinessleadersishowtoachievesustainablenet-zero

impactgrowth.Contributingtothischallengearethreekeyfactors,asillustratedinFigure3:complexity,acceleration,andcognition.

Complexity

Industrialsystemsareincreasinglybecomingcomplexsystemsthataresubjecttoemergentpropertiesmakingthemmuchharderto

manage.Acomplexsystemisasystemhavingalargenumberof:

-Elements(orparts)

-Relations(connectionsbetweentheparts)

-Nestedsystems(systemswithinthesystem)

Examplesofcomplexsystemsincludecities,theclimate,andlivingorganisms.Complexsystemsdifferfromcomplicatedsystems.

Complicatedsystemsrunessentiallylikeclockwork,inapredictablemanner.Theymayhavemanyelements,sub-elements,andinter-

actions,butthestructureremainsstableovertimeandtheylend

themselvestoproblemsolvingusingstructuredanalysisthrough

decompositionoftheelements.Uptonow,mostbusinessmanage-mentapproacheshavebeenbasedontheideathatacompany’s

assets,processes,andorganizationcanbeapproximatedtobehave,atleastinlargepart,likeacomplicatedsystem.

Fig3—Thechallengestoindustrialorganizations

Acceleration

…andthepaceofchangeforbusinessisaccelerating…

SUSTAINABLE

GROWTH

…totacklecriticalcomplexsystemicproblems,suchasmaintaining

growthwithnet-zerocradle-to-gravesustainabilityimpact.

Source:ArthurD.Little

18

BlueShift/REPORT003

However,increasinglythisapproximationisbecomingunrealistic.Forexample,considertherecentchangesin:

-Elements.Inthelasttwoyearsalone,thevolumeofenterprisedatahasrisenbyover40%tomorethan2petabytes.2

-Relations.Asaproxyforrelations,thenumber

ofInternetofThings(IoT)connectionsgrewby

nearly20%in2022versus2021,reaching14.4

billion.3Partnerecosystemnetworkshavegreatlyincreasedinsizeandcomplexityinthelastdecade.Demonstratingthis,theproportionofatypicalcarmanufacturedbythird-partysuppliersincreased

from56%in1985toabout82%in2015,4aproportionthatisstilllargelythecasetoday.

-Nestedsystems.Thenumberofnested“l(fā)ayers”inindustrialsystemarchitectureshasincreased.In

aerospace,forexample,thenumberofspecificationelementsinthelatestpassengerjetdesignsismorethan10xthatofitspredecessors.

Whatthismeansisthattheindustrialsystemofany

largecompany—plants,processes,people,finance,

customers,supplychain,partners,shareholders,and

theirenvironment—increasinglyhastobetreatedasacomplexsystemformanagementpurposes.

Complexsystemsareinherentlydifficulttomanageduetothreespecificproperties:

1.Emergence.New,unexpectedpropertiesemergefromtheinteractionsbetweentheparts.

2.Non-linearity.Feedbackloopsbetweenthepartsmayleadtoexponentialbehaviors.

3.Resilience.Asmallissuewithinpartofthesystemdoesnotnecessarilyleadtoitsfailure.

Thesepropertiesmeanthatthebehaviorsofacom-

plexsystemareveryhardtopredict,introducingahighdegreeofuncertaintyintotheimpactofmanagementdecisions.Managersrelyingonsimplifiedmodelsof

theirsystemstohelpmakedecisionsfindthatthosemodelsareofteninadequate.Indeed,failuretoade-quatelyrecognizeinherentuncertaintiesisoneofthemainreasonswhynewITsystemsoftenfailtodelivertheexpectedbenefits.

Acceleration

Thepaceofchangeforbusinessiscontinuingtoaccel-erate,causingtheseunpredictableemergenteffectstooccurfasterandfaster.Threefactorsaredrivingthisacceleration:

1.Knowledgeandenablingtechnologiesare

beingdevelopedandadoptedatanincreasinglyrapidrate,withagreaternumberofexponentialtechnologiesdrivingtransformationalchange.

2.Thelifecycleofcompaniesandproductsis

shortening.Forexample,theaveragelifespan

ofS&P500companieshasfallenfromaround

35yearsinthe1970stoaround20yearstoday.

Productlifespansinmanysectorsarereducing,

withincreasingratesofdisruptionbynewentrantsandfastermarketpenetrationtimes.

3.Supplychainsareincreasinglysubjecttochangeanddisruption.Evermorecomplexsupplychains

andpartnerecosystemsarebeingimpactedby

globalandrapiddisruptionssuchasclimatechange,pandemics,warinEurope,andothergeopolitical

instabilities.Additionally,sustainabilitytrends

suchasbio-sourcingareleadingtomoresuppliervariability.

Thisaccelerationmeansthatcompaniesneedtobeabletorespondtochangingcircumstancesmorerapidlyandmakestrategicdecisionsfaster.

2Taylor,Petroc.“VolumeofEnterpriseDataWorldwide2020–2022,byLocation.”Statista,23May2022.

3IoTAnalytics.“IoT2022:ConnectedDevicesGrowing18%to14.4BillionGlobally.”IoTforAll,1September2022.

4Kallstrom,Henry.“Suppliers’PowerIsIncreasingintheAutomobileIndustry.”Yahoo!News,6February2015.

19

BlueShift/REPORT003

Maturity

Commercialization

Cognition

Thelimitationsofhumancognitionmeanthatmakinggooddeci-

sionswithinthesefaster-moving,unpredictablesystemsisdifficult.Thehumanbrainisnotdesignedtodealwellwithcomplexsystems—humanstendtothinkinaCartesianway,breakingproblemsintosmallerparts,whichoversimplifiescomplexity.Inthesesituations,humanstendtobeespeciallysusceptibletocognitivebiases—

relyingoninformationthatmatchespreviousideasandbelief

systems—whichoftenleadstoincorrectdecisionsbeingmade.

Moreandmorebusinessphenomenafeaturenonlinearorexponen-tialbehaviors,whichthehumanbraindoesnotevaluatewell.For

example,asmallerrorinapredictedtechnologydevelopment“curvefit”cancauseabigdiscrepancydowntheline,asshowninFigure

4.Examplesofthisincludematurityinautonomousvehiclesand

nuclearfusion,bothofwhichhavebeenrepeatedlyoverestimated,whilerecentlyAIhasbecomeexponentialaftermanydecadesintheflatpartofthecurve.

Fig4—Theimpactofsmallerrorsgrowsovertime

…meansabig

differenceintime

tomarkettomorrow.

Asmallerrorin

maturityestimationtoday…

Development

Time

YesterdayTodayTomorrow

Source:ArthurD.Little;Miller,GeorgeA.“TheMagicalNumberSeven,PlusorMinusTwo:SomeLimitsonOurCapacityforProcessingInformation.”PsychologicalReview,Vol.63,1956.

20

BlueShift/REPORT003

Sustainability

Meanwhile,sustainabilityimperativesmeanthatend-to-endcomplexindustrialsystemcontrolisgrowinginimportance.Mostdevelopedcountrieshavesetgoalstobenetzerobetween2040–2060.Thismeansthat

companiesfacethechallengeofcontinuingtoachieveeconomicgrowthwhilereducingtheirenvironmentalimpacttonetzero.

Achievingprogressonnetzeroimpactwhilemain-

taininggrowthrequirescompaniestoexertcontrol

acrosstheend-to-endcomplexindustrialsystem(e.g.,managingScope3aswellasScope1and2emissions).Thismeans:

-Sharingcurrentrelevantdata(e.g.,operationalandenvironmentalperformancedata)acrosstheentireindustrialsystemofwhichtheyareapart,includingallthirdpartiesinvolved.

-Beingabletopredictthesustainabilityimpactsofchangestoanypartofthissystem,includingsupplychain,manufacturing,distribution,sales,in-service,andend-of-lifedisposal/recycling.

Todaythiscontroltypicallyisattemptedbyconductingdiscreteimpactanalysesandcollaboratingwiththird

partiestoshareinformationandtakecollectiveaction.However,achievingtrueend-to-endcontrolisdifficultduetoamixoftechnicalchallengesandinstitutional,

organizational,andculturalbarriersaroundtheneces-sarydegreeofdatasharingandcollaboration.Onthe

technicalside,thetechnologiesrequiredforgathering,monitoring,analyzing,andsimulatingthelargeamountsofdatanecessarytopredictend-to-endsustainabilityimpactsinacomplex,large-scaleindustrialsystemarenotfullymature.

Whilenoneofthesechallengesarecompletelynewtobusiness,approachesusedtotacklethemtodaywillincreasinglybeinadequatetomeettheneedsofthecomingyears,givencurrenttrends.

HowtheIndustrialMetaverse

addressestheseunmetneeds

Industry4.0technologies,includingdigitaltwins,arealreadyprovidingsignificantbenefits,butaswehavediscussed,withoutfurtherevolutiontheycannotmeetalloftomorrow’sneedsforavarietyofreasons:

-Theyaremainlylimitedtodiscretephysicalsystems,notthe“wholesystem.”

-Decision-makingistoostaticandsiloed.

-Netzeroobligationsonindustrymeanthatmoreeffective,whole-systemmanagementwillbe

increasinglyessentialinthecomingyear

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論