高考數(shù)學二輪復習核心專題講練:函數(shù)與導數(shù)第1講 函數(shù)的圖象與性質(zhì) 原卷版_第1頁
高考數(shù)學二輪復習核心專題講練:函數(shù)與導數(shù)第1講 函數(shù)的圖象與性質(zhì) 原卷版_第2頁
高考數(shù)學二輪復習核心專題講練:函數(shù)與導數(shù)第1講 函數(shù)的圖象與性質(zhì) 原卷版_第3頁
高考數(shù)學二輪復習核心專題講練:函數(shù)與導數(shù)第1講 函數(shù)的圖象與性質(zhì) 原卷版_第4頁
高考數(shù)學二輪復習核心專題講練:函數(shù)與導數(shù)第1講 函數(shù)的圖象與性質(zhì) 原卷版_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第1講函數(shù)的圖象與性質(zhì)目錄第一部分:知識強化第二部分:重難點題型突破突破一:函數(shù)的定義及其表示角度1:函數(shù)的定義域角度2:函數(shù)的值域角度3:分段函數(shù)及其應用突破二:函數(shù)奇偶性與單調(diào)性突破三:函數(shù)奇偶性與對稱性與周期性綜合突破四:函數(shù)的圖象及其應用角度1:根據(jù)解析式識別函數(shù)圖象角度2由圖象確定函數(shù)解析式

第三部分:沖刺重難點特訓第一部分:知識強化1、函數(shù)的單調(diào)性①判斷方法:定義法、圖象法、導數(shù)法.②復合函數(shù)的單調(diào)性(同調(diào)增;異調(diào)減)對于函數(shù)SKIPIF1<0和SKIPIF1<0,如果當SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0在區(qū)間SKIPIF1<0上和SKIPIF1<0在區(qū)間SKIPIF1<0上同時具有單調(diào)性,則復合函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上具有單調(diào)性,并且具有這樣的規(guī)律:增增(或減減)則增,增減(或減增)則減.③函數(shù)相加或相減后單調(diào)性設SKIPIF1<0,兩個函數(shù)SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性如下表,則SKIPIF1<0在SKIPIF1<0上的單調(diào)性遵循(增+增=增;減+減=減)SKIPIF1<0SKIPIF1<0SKIPIF1<0增增增減減減SKIPIF1<0SKIPIF1<0SKIPIF1<0增減增減增減2、函數(shù)的奇偶性①判斷方法:定義法、圖象法、奇偶函數(shù)性質(zhì)法(如奇函數(shù)×奇函數(shù)是偶函數(shù)).②對數(shù)型復合函數(shù)判斷奇偶性常用SKIPIF1<0或SKIPIF1<0來判斷奇偶性.③SKIPIF1<0,SKIPIF1<0在它們的公共定義域上有下面的結論:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)奇函數(shù)不能確定不能確定奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)不能確定不能確定奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)偶函數(shù)3、函數(shù)的周期性函數(shù)周期性的常用結論與技巧(同號周期)設函數(shù)SKIPIF1<0,SKIPIF1<0.①若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;②若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;③若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;④若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;⑤SKIPIF1<0,則函數(shù)的周期SKIPIF1<04、函數(shù)對稱性(1)軸對稱:若函數(shù)SKIPIF1<0關于直線SKIPIF1<0對稱,則①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0(2)點對稱:若函數(shù)SKIPIF1<0關于直線SKIPIF1<0對稱,則①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0(2)點對稱:若函數(shù)SKIPIF1<0關于直線SKIPIF1<0對稱,則①SKIPIF1<0②SKIPIF1<0③SKIPIF1<05、函數(shù)圖象(1)平移變換(左“+”右“-”;上“+”下“-”)①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0④SKIPIF1<0(2)對稱變換①SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;②SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;③SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;④SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象SKIPIF1<0SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象.(3)伸縮變換①SKIPIF1<0SKIPIF1<0SKIPIF1<0.②SKIPIF1<0SKIPIF1<0SKIPIF1<0.(4)翻折變換(絕對值變換)①SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;(口訣;以SKIPIF1<0軸為界,保留SKIPIF1<0軸上方的圖象;將SKIPIF1<0軸下方的圖象翻折到SKIPIF1<0軸上方)②SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象.(口訣;以SKIPIF1<0軸為界,去掉SKIPIF1<0軸左側的圖象,保留SKIPIF1<0軸右側的圖象;將SKIPIF1<0軸右側圖象翻折到SKIPIF1<0軸左側;本質(zhì)是個偶函數(shù))(5)圖象識別技巧(按使用頻率優(yōu)先級排序)①特殊值法(觀察圖象,尋找圖象中出現(xiàn)的特殊值)②單調(diào)性法(SKIPIF1<0;SKIPIF1<0;SKIPIF1<0,SKIPIF1<0;通過求導判斷單調(diào)性)③奇偶性法SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)奇函數(shù)不能確定不能確定奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)不能確定不能確定奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)偶函數(shù)④極限(左右極限)(SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;)⑤零點法⑥極大值極小值法第二部分:重難點題型突破突破一:函數(shù)的定義及其表示角度1:函數(shù)的定義域1.(2022·山東濟南·二模)函數(shù)SKIPIF1<0的定義域是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·江西·修水中等專業(yè)學校模擬預測)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0角度2:函數(shù)的值域1.(2022·全國·江西科技學院附屬中學模擬預測(文))函數(shù)SKIPIF1<0的值域(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·上海市光明中學模擬預測)已知定義在SKIPIF1<0的函數(shù)SKIPIF1<0,滿足:SKIPIF1<0在SKIPIF1<0上的解析式為SKIPIF1<0,設SKIPIF1<0的值域為SKIPIF1<0.若存在實數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的可能取值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0角度3:分段函數(shù)及其應用1.(2022·廣東·深圳市光明區(qū)高級中學模擬預測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·江西·上饒市第一中學模擬預測(理))已知SKIPIF1<0,若SKIPIF1<0,則n的最大值為(

)A.9 B.10 C.11 D.123.(2022·山西·模擬預測(文))已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有三個零點,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·河南省杞縣高中模擬預測(文))已知函數(shù)SKIPIF1<0滿足對任意的實數(shù)SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國·江西師大附中模擬預測(文))已知函數(shù)SKIPIF1<0則不等式SKIPIF1<0的解集為______.6.(2022·陜西·西北工業(yè)大學附屬中學模擬預測(理))已知函數(shù)SKIPIF1<0,則SKIPIF1<0的圖象上關于坐標原點SKIPIF1<0對稱的點共有(

)A.0對 B.1對 C.2對 D.3對突破二:函數(shù)奇偶性與單調(diào)性1.(2022·河南·模擬預測(理))已知SKIPIF1<0是偶函數(shù)且在SKIPIF1<0上單調(diào)遞增,則滿足SKIPIF1<0的一個區(qū)間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·河南·開封市東信學校模擬預測(文))已知SKIPIF1<0是SKIPIF1<0上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則滿足SKIPIF1<0的m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·河南·通許縣第一高級中學模擬預測(文))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且SKIPIF1<0上單調(diào)遞減,設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·廣西北?!ひ荒#ɡ恚┮阎婧瘮?shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.若SKIPIF1<0,則SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·河南許昌·三模(文))已知函數(shù)SKIPIF1<0是定義在R上的偶函數(shù),且在區(qū)間SKIPIF1<0上是減函數(shù),SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·青?!の鲗幈蓖飧綄傩氯A聯(lián)外國語高級中學有限公司模擬預測)已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為______.突破三:函數(shù)奇偶性與對稱性與周期性綜合1.(2022·青?!の鲗幈蓖飧綄傩氯A聯(lián)外國語高級中學有限公司模擬預測)已知定義域是R的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0,則SKIPIF1<0(

)A.1 B.-1 C.2 D.-32.(2022·河南·固始縣高級中學第一中學模擬預測(文))已知函數(shù)SKIPIF1<0是SKIPIF1<0上的偶函數(shù),且SKIPIF1<0的圖象關于點SKIPIF1<0對稱,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.23.(2022·四川·鹽亭中學模擬預測(文))已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.3 B.0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·河南信陽·一模(理))已知定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·廣西北?!ひ荒#ㄎ模┮阎婧瘮?shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0對任意SKIPIF1<0恒成立,若SKIPIF1<0,則SKIPIF1<0____________.6.(2022·遼寧·東北育才雙語學校一模)已知函數(shù)SKIPIF1<0的圖象關于直線SKIPIF1<0對稱,且對SKIPIF1<0都有SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.則SKIPIF1<0___________.突破四:函數(shù)的圖象及其應用角度1:根據(jù)解析式識別函數(shù)圖象1.(2022·四川雅安·模擬預測(理))函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象大致是(

)A. B.C. D.2.(2022·江蘇南通·模擬預測)函數(shù)SKIPIF1<0的部分圖像大致為(

)A. B.C. D.3.(2022·河南省葉縣高級中學模擬預測(文))函數(shù)SKIPIF1<0在SKIPIF1<0的圖像大致為(

)A. B.C. D.4.(2022·黑龍江·雞東縣第二中學二模)函數(shù)SKIPIF1<0的大致圖象是(

)A. B.C. D.5.(2022·吉林·東北師大附中模擬預測)函數(shù)SKIPIF1<0的大致圖象是(

)A. B.C. D.角度2由圖象確定函數(shù)解析式

1.(2022·青?!つM預測(理))已知函數(shù)SKIPIF1<0的部分圖像如圖所示,則函數(shù)SKIPIF1<0的解析式可能為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·陜西·西北工業(yè)大學附屬中學模擬預測(理))已知函數(shù)SKIPIF1<0圖象如圖所示,那么該函數(shù)可能為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·浙江·金華市曙光學校模擬預測)函數(shù)SKIPIF1<0的圖像如圖所示,則其解析式可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·安徽·安慶一中模擬預測(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象如圖所示,則函數(shù)SKIPIF1<0的解析式可能為(

)SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·黑龍江·一模(理))已知某個函數(shù)的圖像如圖所示,則下列解析式中與此圖像最為符合的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0第三部分:沖刺重難點特訓一、單選題1.(2022·遼寧實驗中學高一期中)函數(shù)SKIPIF1<0的值域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·浙江·溫州中學高一期中)函數(shù)SKIPIF1<0的值域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·江西·高二階段練習)對于定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,如果存在實數(shù)SKIPIF1<0,使得SKIPIF1<0對任意實數(shù)SKIPIF1<0恒成立,則稱SKIPIF1<0為關于SKIPIF1<0的“SKIPIF1<0函數(shù)”.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0是關于SKIPIF1<0和SKIPIF1<0的“SKIPIF1<0函數(shù)”,且當SKIPIF1<0時SKIPIF1<0的值域為SKIPIF1<0,則當SKIPIF1<0時SKIPIF1<0的值域為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·廣東·深圳市寶安中學(集團)高一期中)已知函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<05.(2022·浙江·德清縣教育研訓中心高一期中)已知SKIPIF1<0是偶函數(shù),對SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0則SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·四川外國語大學附屬外國語學校高一期中)已知函數(shù)SKIPIF1<0,若對所有SKIPIF1<0,都有SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·山西忻州·高三階段練習)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0.且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022·黑龍江·牡丹江市第二高級中學高三階段練習)函數(shù)SKIPIF1<0對任意SKIPIF1<0都有SKIPIF1<0成立,且函數(shù)SKIPIF1<0的圖象關于點SKIPIF1<0對稱,SKIPIF1<0,則SKIPIF1<0(

)A.4 B.3 C.2 D.19.(2022·河南南陽·高三期中(理))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2022·貴州遵義·高三期中(理))已知定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.2 D.311.(2022·廣東·深圳市福田區(qū)福田中學高三階段練習)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的圖象大致為()A. B.C. D.12.(2022·河南·模擬預測(理))如圖是函數(shù)SKIPIF1<0的圖象,則函數(shù)SKIPIF1<0的解析式可以為(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<013.(2022·江蘇·南京師大附中高三期中)函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.14.(2022·河北·唐山市第十一中學高三階段練習)函數(shù)SKIPIF1<0的部分圖象大致為(

)A. B.C. D.15.(2022·遼寧大連·高三期中)下列函數(shù)的解析式(其中SKIPIF1<0…為自然對數(shù)的底數(shù))與所給圖像最契合的是(

)A.SKIPIF1<0 B.SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論