2023年甘肅省隴南市高職單招數學月考卷題庫(含答案)_第1頁
2023年甘肅省隴南市高職單招數學月考卷題庫(含答案)_第2頁
2023年甘肅省隴南市高職單招數學月考卷題庫(含答案)_第3頁
2023年甘肅省隴南市高職單招數學月考卷題庫(含答案)_第4頁
2023年甘肅省隴南市高職單招數學月考卷題庫(含答案)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年甘肅省隴南市高職單招數學月考卷題庫(含答案)學校:________班級:________姓名:________考號:________

一、單選題(50題)1.將一個容量為40的樣本分成若干組,在它的頻率分布直方圖中,若其中一組的相應的小長方形的面積是0.4,則該組的頻數等于()

A.4B.6C.10D.16

2.已知向量a=(2,t),b=(1,2),若a∥b,則t=()

A.t=-4B.t=-1C.t=1D.t=4

3.與y=sinx相等的是()

A.y=cos(x+Π)B.y=cos(x-Π)C.y=cos(Π/2-x)D.y=cos(Π/2+x)

4.函數y=x3?x在x=1處的導數是()

A.2B.3C.4D.5

5.過點P(1,-1)垂直于X軸的直線方程為()

A.x+1=0B.x-1=0C.y+1=0D.y-1=0

6.不等式(x+2)(x?3)≤0的解集為()

A.?B.{x|?2≤x≤3}C.RD.{x|x≥3或x≤?2}

7.已知兩個班,一個班35個人,另一個班30人,要從兩班中抽一名學生,則抽法共有()

A.1050種B.65種C.35種D.30種

8.設f(x)=2x+5,則f(2)=()

A.7B.8C.9D.10

9.若拋物線y2=2px(p>0)的準線與圓(x-3)2+y2=16相切,則p的值為()

A.1/2B.1C.2D.4

10.過點(-2,1)且平行于直線2x-y+1=0的直線方程為()

A.2x+y-1=0B.2x-y+5=0C.x-2y-3=0D.x-2y+5=0

11.與5Π/3終邊相同的角是()

A.2Π/3B.-2Π/3C.-Π/3D.Π/3

12.定義在R上的函數f(x)是奇函數又是以2為周期的周期函數,則f(1)+f(4)+f(7)等于()

A.-1B.0C.1D.4

13.已知向量a=(2,-3),向量b=(一6,y),且a⊥b,則y=()

A.-9B.9C.4D.-4

14.已知點M(1,2)為拋物線y2=4x上的點,則點M到該拋物線焦點的距離為()

A.10B.8C.3D.2

15.log?64-log?16等于()

A.1B.2C.4D.8

16.在某次1500米體能測試中,甲、乙2人各自通過的測試的概率分別是2/5,3/4,只有一人通過的概率是()

A.3/5B.3/10C.1/20D.11/20

17.若正實數x,y滿足2x+y=1,則1/x+1/y的最小值為()

A.1/2B.1C.3+2√2D.3-2√2

18.同時擲兩枚骰子,所得點數之積為12的概率為()

A.1/12B.1/4C.1/9D.1/6

19.在“綠水青山就是金山銀山”這句話中任選一個漢字,這個字是“山”的概率為()

A.3/10B.1/10C.1/9D.1/8

20.已知圓錐曲線母線長為5,底面周長為6π,則圓錐的體積是().

A.6πB.8πC.10πD.12π

21.已知方程x2+px+15=0與x2-5x+q=0的解集分別是M與N,且M∩N={3},則p+q的值是()

A.14B.11C.2D.-2

22.cos78°*cos18°+sin18°sin102°=()

A.-√3/2B.√3/2C.-1/2D.1/2

23.“0<x<1”是“x2

A.充分非必要條件B.必要非充分條件C.充分且必要條件D.非充分非必要條件

24.在等差數列(an)中,a1=-33,d=6,使前n項和Sn取得最小值的n=()

A.5B.6C.7D.8

25.不等式|x2-2|<2的解集是()

A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)

26.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={4,5,6,7,8},則Cu(M∪N)=()

A.{2}B.{5,7}C.{2,4,8}D.{1,3,5,6,7}

27.已知集合M={1,2,3,4},N={0,1,2},則M是∪N=()

A.?B.{1,2}C.{0,1,2,3,4}D.R

28."x<0"是“l(fā)n(x+1)<0”的()

A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

29.某射擊運動員的第一次打靶成績?yōu)?,8,9,8,7第二次打靶成績?yōu)?,8,9,9,7,則該名運動員打靶成績的穩(wěn)定性為()

A.一樣穩(wěn)定B.第一次穩(wěn)定C.第二次穩(wěn)定D.無法確定

30.樣本5,4,6,7,3的平均數和標準差為()

A.5和2B.5和√2C.6和3D.6和√3

31.不等式|x-1|<2的解集為()

A.y=x2B.y=x2-xC.y=x3D.y=1/x

32.若直線x+y=0與直線ax-2y+1=0互相垂直,則a的值為()

A.-2B.2C.-1D.1

33.下列各角中,與330°的終邊相同的是()

A.570°B.150°C.?150°D.?390°

34.扔兩個質地均勻的骰子,則朝上的點數之和為5的概率是()

A.1/6B.1/9C.1/12D.1/18

35.數軸上的點A到原點的距離是3,則點A表示的數為()

A.3或-3B.6C.-6D.6或-6

36.已知等差數列{an}的公差為2,若a?,a?,a?成等比數列,則a?=().

A.-4B.-6C.-8D.-10

37.已知直線l的傾斜角是45,在軸上的截距是2,則直線l的方程是()

A.x-y-2=0B.x一y+2=0C.z+y+2=0D.x+y-2=0

38.拋物線y2=4x上的一點P至焦點F的距離為3,則P到軸y的距離為()

A.4B.3C.2D.1

39.在等比數列{an}中,已知a?,a?是方程x2-12x+9=0的兩個根,則a?=()

A.12B.9C.±2√3D.±3

40.要得到函數y=cos2x的圖象,只需將函數y=-sin2x的圖象沿x軸()

A.向右平移Π/4個單位B.向左平移Π/4個單位C.向右平移Π/8個單位D.向左平移Π/8個單位

41.已知角α的終邊上一點P(-3,4),則cosα的值為()

A.3/5B.4/5C.-3/5D.-4/5

42.在△ABC中,內角A,B滿足sinAsinB=cosAcosB,則△ABC是()

A.等邊三角形B.鈍角三角形C.非等邊銳角三角形D.直角三角形

43.設a=lg2,b=lg3,c=lg5,則lg30=()

A.abcB.a+b+cC.a-b-cD.無法確定

44.經過兩點A(4,0),B(0,-3)的直線方程是()

A.3x-4y-12=0

B.3x+4y-12=0

C.4x-3y+12=0

D.4x+3y+12=0

45.函數f(x)=x2-2x-3()

A.在(-∞,2)內為增函數

B.在(-∞,1)內為增函數

C.在(1,+∞)內為減函數

D.在(1,+∞)內為增函數

46.若等差數列{an}的前n項和Sn=n2+a(a∈R),則a=()

A.-1B.2C.1D.0

47.已知y=f(x)是奇函數,f(2)=5,則f(-2)=()

A.0B.5C.-5D.無法判斷

48.盒內裝有大小相等的3個白球和1個黑球,從中摸出2個球,則2個球全是白球的概率是()

A.3/4B.2/3C.1/3D.1/2

49.已知{an}是等比數列,a?=2,a?+a?=24,則公比q的值為()

A.-4或3B.-4或-3C.-3或4D.3或4

50.如果橢圓的一個焦點坐標是為(3,0),一個長軸頂點為(?5,0),則該橢圓的離心率為()

A.3/5B.-3/5C.1D.2

二、填空題(20題)51.已知向量a=(1/2,cosα),b=(-√3/2,sinα),且a⊥b,則sinα=______。

52.在關系式y=2x2+x+1中,可把_________看成_________的函數,其中_________是自變量,_________是因變量。

53.在等差數列{an}中,an=3-2n,則公差d=_____________。

54.(√2-1)?+lg5+lg2-8^?=___________。

55.sin(-60°)=_________。

56.已知過拋物線y2=4x焦點的直線l與拋物有兩個交點A(x?,y?)和B(x?,y?)如果x?+x?=6,則|AB|=_________。

57.若(lg50+lg2)(√2)^x=4,則x=________。

58.若2^x>1,則x的取值范圍是___________;

59.已知cos(Π-a)=1/2,則cos2a=_________。

60.若函數f(x)=x2+(b-3)x+2是偶函數,則b=________,增區(qū)間為________。

61.lg100-log?1+(√3-1)=___________;

62.△ABC對應邊分別為a、b、c,已知3b=4a,B=2A,則cosA=________。

63.f(x)是定義在(0,+∞)上的增函數,則不等式f(x)>f(2x-3)的解集是________。

64.以點(?2,?1)為圓心,且過p(?3,0)的圓的方程是_________;

65.以兩直線x+y=0和2x-y-3=0的交點為圓心,且與直線2x-y+2=0相切的圓的標準方程方程是________。

66.過點A(2,-1),B(0,-1)的直線的斜率等于__________.

67.若數列{an}的前n項和為Sn=n2+n,則an=________。

68.直線x+2y+1=0被圓(x一2)2+(y-1)2=25所截得的弦長為______。

69.將一個容量為n的樣本分成3組,已知第1,2組的頻率為0.2,0.5,第三組的頻數為12,則n=________。

70.不等式|8-2x|≤3的解集為________。

三、計算題(10題)71.解下列不等式x2>7x-6

72.求證sin2α+sin2β?sin2αsin2β+cos2αcos22β=1;

73.我國是一個缺水的國家,節(jié)約用水,人人有責;某市為了加強公民的節(jié)約用水意識,采用分段計費的方法A)月用水量不超過10m3的,按2元/m3計費;月用水量超過10m3的,其中10m3按2元/m3計費,超出部分按2.5元/m3計費。B)污水處理費一律按1元/m3計費。設用戶用水量為xm3,應交水費為y元(1)求y與x的函數關系式(2)張大爺家10月份繳水費37元,問張大爺10月份用了多少水量?

74.計算:(4/9)^?+(√3+√2)?+125^(-?)

75.解下列不等式:x2≤9;

76.數列{an}為等差數列,a?+a?+a?=6,a?+a?=25,(1)求{an}的通項公式;(2)若bn=a?n,求{bn}前n項和Sn;

77.已知在等差數列{an}中,a1=2,a8=30,求該數列的通項公式和前5項的和S5;

78.已知sinα=1/3,則cos2α=________。

79.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。

80.圓(x-1)2+(x-2)2=4上的點到直線3x-4y+20=0的最遠距離是________。

參考答案

1.D

2.Da(2,t),b(1,2),因為a∥b,所以2*t-1*t=0,t=4,故選D.考點:平面向量共線.

3.C[解析]講解:考察誘導公式,“奇變偶不變,符號看象限”,A,B為余弦,C,D為正弦,只有C是正的,選C

4.A

5.B

6.B

7.B

8.C[解析]講解:函數求值問題,將x=2帶入求得,f(2)=2×2+5=9,選C

9.C[解析]講解:題目拋物線準線垂直于x軸,圓心坐標為(3,0)半徑為4,與圓相切則為x=?1或x=7,由于p>0,所以x=?1為準線,所以p=2

10.B

11.C

12.B

13.D

14.D

15.A

16.D

17.C考點:均值不等式.

18.C

19.A

20.D立體圖形的考核,底面為一個圓,周長知道了,求得半徑為3,高可以用勾股定理求出為4,得出體積12π

21.B

22.D

23.A

24.B

25.D[解析]講解:絕對值不等式的求解,-2<x2-2<2,故0<x2

26.A[解析]講解:集合運算的考察,M∪N={1,3,4,5,6,7,8},Cu(M∪N)={2}選A

27.CM是∪N={0,1,2,3,4}

28.B[解析]講解:由ln(x+1)<0解得-1<x<0;然而x<0不能推出-1<x

29.B

30.B

31.A

32.B

33.D[解析]講解:考察終邊相同的角,終邊相同則相差整數倍個360°,選D

34.B

35.A

36.B[解析]講解:等差數列中a?=a?+2d,a?=a?+3d,a?,a?,a?成等差數列,所以(a?+2d)2=a?(a?+3d),解得a?=-8,a?=-6

37.A

38.C

39.D

40.A

41.C

42.D

43.Blg30=lg(2*3*5)=lg2+lg3+lg5=a+b+c,故選B.考點:對數的運算.

44.A由直線方程的兩點式可得經過兩點兩點A(4,0),B(0,-3)的直線方程為:(y-0)/(-3-0)=(x-0)/(0-4),既3x-4y-12=0故選A.考點:直線的兩點式方程.

45.D

46.D

47.C依題意,y=f(x)為奇函數,∵f(2)=5,∴f(-2)=-f(2)=-5,故選C.考點:函數的奇偶性應用.

48.D

49.A

50.A

51.√3/2

52.可把y看成x的函數,其中x是自變量,y是因變量.

53.-2

54.0

55.-√3/2

56.8

57.2

58.X>0

59.-1/2

60.3,[0,+∞]

61.3

62.2/3

63.(3/2,3)

64.(x+2)2+(y+1)2=2

65.(x-1)2+(y+1)2=5

66.0

67.2n

68.4√5

69.40

70.[5/2,11/2]

71.解:因為x2>7x-6所以x2-7x+6>0所以(x-1)(x-6)>0所以x>6或x<1所以原不等式的解集為{x|x>6或x<1}

72.證明:因為sin2α+sin2β?sin2αsin2β+cos2αcos2β=(sin2α?sin2αsin2β)+sin2α+cos2αcos2β=sin2α(1-sin2β)+sin2α+cos2αcos2β=sin2αcos2β+sin2β+cos2αcos2β=cos2β(sin2α+cos2α)+sin2β=cos2β+s

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論