版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、數(shù)列多選題1.已知數(shù)列中,,,.若對于任意的,不等式恒成立,則實數(shù)可能為()A.-4 B.-2 C.0 D.2答案:AB【分析】由題意可得,利用裂項相相消法求和求出,只需對于任意的恒成立,轉(zhuǎn)化為對于任意的恒成立,然后將選項逐一驗證即可求解.【詳解】,,則,,,,上述式子累加可得:,,對于任意的恒成立解析:AB【分析】由題意可得,利用裂項相相消法求和求出,只需對于任意的恒成立,轉(zhuǎn)化為對于任意的恒成立,然后將選項逐一驗證即可求解.【詳解】,,則,,,,上述式子累加可得:,,對于任意的恒成立,整理得對于任意的恒成立,對A,當時,不等式,解集,包含,故A正確;對B,當時,不等式,解集,包含,故B正確;對C,當時,不等式,解集,不包含,故C錯誤;對D,當時,不等式,解集,不包含,故D錯誤,故選:AB.【點睛】本題考查了裂項相消法、由遞推關(guān)系式求通項公式、一元二次不等式在某區(qū)間上恒成立,考查了轉(zhuǎn)化與劃歸的思想,屬于中檔題.2.已知數(shù)列的前4項為2,0,2,0,則該數(shù)列的通項公式可能為()A. B.C. D.答案:BD【分析】根據(jù)選項求出數(shù)列的前項,逐一判斷即可.【詳解】解:因為數(shù)列的前4項為2,0,2,0,選項A:不符合題設(shè);選項B:,符合題設(shè);選項C:,不符合題設(shè);選項D:,符合題設(shè)解析:BD【分析】根據(jù)選項求出數(shù)列的前項,逐一判斷即可.【詳解】解:因為數(shù)列的前4項為2,0,2,0,選項A:不符合題設(shè);選項B:,符合題設(shè);選項C:,不符合題設(shè);選項D:,符合題設(shè).故選:BD.【點睛】本題考查數(shù)列的通項公式的問題,考查了基本運算求解能力,屬于基礎(chǔ)題.3.設(shè)等比數(shù)列的公比為,其前項和為,前項積為,并且滿足條件,,則下列結(jié)論正確的是()A. B.C.的最大值為 D.的最大值為答案:AD【分析】分類討論大于1的情況,得出符合題意的一項.【詳解】①,與題設(shè)矛盾.②符合題意.③與題設(shè)矛盾.④與題設(shè)矛盾.得,則的最大值為.B,C,錯誤.故選:AD.【點睛】解析:AD【分析】分類討論大于1的情況,得出符合題意的一項.【詳解】①,與題設(shè)矛盾.②符合題意.③與題設(shè)矛盾.④與題設(shè)矛盾.得,則的最大值為.B,C,錯誤.故選:AD.【點睛】考查等比數(shù)列的性質(zhì)及概念.補充:等比數(shù)列的通項公式:.4.斐波那契數(shù)列,又稱黃金分割數(shù)列、兔子數(shù)列,是數(shù)學(xué)家列昂多·斐波那契于1202年提出的數(shù)列.斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,此數(shù)列從第3項開始,每一項都等于前兩項之和,記該數(shù)列為,則的通項公式為()A.B.且C.D.答案:BC【分析】根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式,再驗證即可;【詳解】解:斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,顯然,,,,,所以且,即B滿足條件;由,所以所以數(shù)列解析:BC【分析】根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式,再驗證即可;【詳解】解:斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,顯然,,,,,所以且,即B滿足條件;由,所以所以數(shù)列是以為首項,為公比的等比數(shù)列,所以所以,令,則,所以,所以以為首項,為公比的等比數(shù)列,所以,所以;即C滿足條件;故選:BC【點睛】考查等比數(shù)列的性質(zhì)和通項公式,數(shù)列遞推公式的應(yīng)用,本題運算量較大,難度較大,要求由較高的邏輯思維能力,屬于中檔題.5.(多選)在數(shù)列中,若為常數(shù),則稱為“等方差數(shù)列”下列對“等方差數(shù)列”的判斷正確的是()A.若是等差數(shù)列,則是等方差數(shù)列B.是等方差數(shù)列C.是等方差數(shù)列.D.若既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列答案:BD【分析】根據(jù)等差數(shù)列和等方差數(shù)列定義,結(jié)合特殊反例對選項逐一判斷即可.【詳解】對于A,若是等差數(shù)列,如,則不是常數(shù),故不是等方差數(shù)列,故A錯誤;對于B,數(shù)列中,是常數(shù),是等方差數(shù)列,故解析:BD【分析】根據(jù)等差數(shù)列和等方差數(shù)列定義,結(jié)合特殊反例對選項逐一判斷即可.【詳解】對于A,若是等差數(shù)列,如,則不是常數(shù),故不是等方差數(shù)列,故A錯誤;對于B,數(shù)列中,是常數(shù),是等方差數(shù)列,故B正確;對于C,數(shù)列中,不是常數(shù),不是等方差數(shù)列,故C錯誤;對于D,是等差數(shù)列,,則設(shè),是等方差數(shù)列,是常數(shù),故,故,所以,是常數(shù),故D正確.故選:BD.【點睛】關(guān)鍵點睛:本題考查了數(shù)列的新定義問題和等差數(shù)列的定義,解題的關(guān)鍵是正確理解等差數(shù)列和等方差數(shù)列定義,利用定義進行判斷.6.是等差數(shù)列,公差為d,前項和為,若,,則下列結(jié)論正確的是()A. B. C. D.答案:ABD【分析】結(jié)合等差數(shù)列的性質(zhì)、前項和公式,及題中的條件,可選出答案.【詳解】由,可得,故B正確;由,可得,由,可得,所以,故等差數(shù)列是遞減數(shù)列,即,故A正確;又,所以,故C不正確解析:ABD【分析】結(jié)合等差數(shù)列的性質(zhì)、前項和公式,及題中的條件,可選出答案.【詳解】由,可得,故B正確;由,可得,由,可得,所以,故等差數(shù)列是遞減數(shù)列,即,故A正確;又,所以,故C不正確;又因為等差數(shù)列是單調(diào)遞減數(shù)列,且,所以,所以,故D正確.故選:ABD.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列性質(zhì)的應(yīng)用,解題的關(guān)鍵是熟練掌握等差數(shù)列的增減性及前項和的性質(zhì),本題要從題中條件入手,結(jié)合公式,及,對選項逐個分析,可判斷選項是否正確.考查學(xué)生的運算求解能力與邏輯推理能力,屬于中檔題.7.已知數(shù)列的前項和為,前項積為,且,則()A.當數(shù)列為等差數(shù)列時,B.當數(shù)列為等差數(shù)列時,C.當數(shù)列為等比數(shù)列時,D.當數(shù)列為等比數(shù)列時,答案:AC【分析】將變形為,構(gòu)造函數(shù),利用函數(shù)單調(diào)性可得,再結(jié)合等差數(shù)列與等比數(shù)列性質(zhì)即可判斷正確選項【詳解】由,可得,令,,所以是奇函數(shù),且在上單調(diào)遞減,所以,所以當數(shù)列為等差數(shù)列時,;解析:AC【分析】將變形為,構(gòu)造函數(shù),利用函數(shù)單調(diào)性可得,再結(jié)合等差數(shù)列與等比數(shù)列性質(zhì)即可判斷正確選項【詳解】由,可得,令,,所以是奇函數(shù),且在上單調(diào)遞減,所以,所以當數(shù)列為等差數(shù)列時,;當數(shù)列為等比數(shù)列時,且,,同號,所以,,均大于零,故.故選:AC【點睛】本題考查等差數(shù)列與等比數(shù)列,考查邏輯推理能力,轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于中檔題8.定義為數(shù)列的“優(yōu)值”已知某數(shù)列的“優(yōu)值”,前n項和為,則()A.數(shù)列為等差數(shù)列 B.數(shù)列為等比數(shù)列C. D.,,成等差數(shù)列答案:AC【分析】由題意可知,即,則時,,可求解出,易知是等差數(shù)列,則A正確,然后利用等差數(shù)列的前n項和公式求出,判斷C,D的正誤.【詳解】解:由,得,所以時,,得時,,即時,,當時,由解析:AC【分析】由題意可知,即,則時,,可求解出,易知是等差數(shù)列,則A正確,然后利用等差數(shù)列的前n項和公式求出,判斷C,D的正誤.【詳解】解:由,得,所以時,,得時,,即時,,當時,由知,滿足.所以數(shù)列是首項為2,公差為1的等差數(shù)列,故A正確,B錯,所以,所以,故C正確.,,,故D錯,故選:AC.【點睛】本題考查數(shù)列的新定義問題,考查數(shù)列通項公式的求解及前n項和的求解,難度一般.9.記為等差數(shù)列的前項和.已知,,則()A. B.C. D.答案:AC【分析】由求出,再由可得公差為,從而可求得其通項公式和前項和公式【詳解】由題可知,,即,所以等差數(shù)列的公差,所以,.故選:AC.【點睛】本題考查等差數(shù)列,考查運算求解能力.解析:AC【分析】由求出,再由可得公差為,從而可求得其通項公式和前項和公式【詳解】由題可知,,即,所以等差數(shù)列的公差,所以,.故選:AC.【點睛】本題考查等差數(shù)列,考查運算求解能力.10.設(shè)公差不為0的等差數(shù)列的前n項和為,若,則下列各式的值為0的是()A. B. C. D.答案:BD【分析】由得,利用可知不正確;;根據(jù)可知正確;根據(jù)可知不正確;根據(jù)可知正確.【詳解】因為,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄭州美術(shù)學(xué)院《嵌入式系統(tǒng)與接口技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江大學(xué)《工程圖學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 漳州理工職業(yè)學(xué)院《中學(xué)政治學(xué)科教學(xué)技能訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 深度學(xué)習中特征表征優(yōu)化策略
- 保險業(yè)務(wù)創(chuàng)新培訓(xùn)模板
- AI技術(shù)保險創(chuàng)新模板
- 雙十二營銷優(yōu)化
- 專業(yè)基礎(chǔ)-房地產(chǎn)經(jīng)紀人《專業(yè)基礎(chǔ)》名師預(yù)測卷1
- 房地產(chǎn)經(jīng)紀綜合能力-2019年房地產(chǎn)經(jīng)紀人協(xié)理《房地產(chǎn)經(jīng)紀綜合能力》真題匯編
- 2024-2025學(xué)年陜西省西安八十三中八年級(上)期末數(shù)學(xué)試卷
- 汽機油管道安裝方案指導(dǎo)
- 2022年中國城市英文名稱
- 語言規(guī)劃課件
- 下肢皮牽引護理PPT課件(19頁PPT)
- 臺資企業(yè)A股上市相關(guān)資料
- 電 梯 工 程 預(yù) 算 書
- 參會嘉賓簽到表
- 形式發(fā)票格式2 INVOICE
- 2.48低危胸痛患者后繼治療評估流程圖
- 人力資源管理之績效考核 一、什么是績效 所謂績效簡單的講就是對
- 山東省醫(yī)院目錄
評論
0/150
提交評論