2023-2024學年廣西全州縣二中高二上數學期末復習檢測模擬試題含解析_第1頁
2023-2024學年廣西全州縣二中高二上數學期末復習檢測模擬試題含解析_第2頁
2023-2024學年廣西全州縣二中高二上數學期末復習檢測模擬試題含解析_第3頁
2023-2024學年廣西全州縣二中高二上數學期末復習檢測模擬試題含解析_第4頁
2023-2024學年廣西全州縣二中高二上數學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣西全州縣二中高二上數學期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量=(3,0,1),=(﹣2,4,0),則3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)2.下列命題中正確的個數為()①若向量,與空間任意向量都不能構成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.43.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓4.設為直線上任意一點,過總能作圓的切線,則的最大值為()A. B.1C. D.5.已知雙曲線的左、右焦點分別為,,過點作直線交雙曲線的右支于A,B兩點.若,則雙曲線的離心率為()A. B.C. D.6.在區(qū)間內隨機取一個數,則方程表示焦點在軸上的橢圓的概率是A. B.C. D.7.在等差數列中,已知,則數列的前9項和為()A. B.13C.45 D.1178.復數的虛部為()A. B.C. D.9.已知函數,若函數有3個零點,則實數的取值范圍是()A. B.C. D.10.甲、乙、丙、丁四位同學一起去找老師詢問成語競賽的成績.老師說:你們四人中有位優(yōu)秀,位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家說:我還是不知道我的成績.根據以上信息,則()A.乙、丁可以知道自己的成績 B.乙、丁可以知道對方的成績C.乙可以知道四人的成績 D.丁可以知道四人的成績11.已知,且,則實數的值為()A. B.3C.4 D.612.函數的最小值是()A.2 B.4C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.某班有位同學,將他們從至編號,現(xiàn)用系統(tǒng)抽樣的方法從中選取人參加文藝演出,抽出的編號從小到大依次排列,若排在第一位的編號是,那么第四位的編號是______14.已知離心率為的橢圓:和離心率為的雙曲線:有公共的焦點,其中為左焦點,P是與在第一象限的公共點.線段的垂直平分線經過坐標原點,則的最小值為_____________.15.年月我國成功發(fā)射了第一顆人造地球衛(wèi)星“東方紅一號”,這顆衛(wèi)星的運行軌道是以地心(地球的中心)為一個焦點的橢圓.已知衛(wèi)星的近地點(離地面最近的點)距地面的高度約為,遠地點(離地面最遠的點)距地面的高度約為,且地心、近地點、遠地點三點在同一直線上,地球半徑約為,則衛(wèi)星運行軌道是上任意兩點間的距離的最大值為___________16.若正四棱柱的底面邊長為5,側棱長為4,則此正四棱柱的體積為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列中,,,等比數列中,,(1)求數列的通項公式;(2)記,求的最小值18.(12分)若存在實常數k和b,使得函數和對其公共定義域上的任意實數x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數,.(1)證明函數在內單調遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.19.(12分)已知數列滿足,(1)設,求證數列為等差數列,并求數列的通項公式;(2)設,數列的前n項和為,是否存在正整數m,使得對任意的都成立?若存在,求出m的最小值;若不存在,試說明理由20.(12分)已知橢圓的左右焦點分別為,,經過左焦點的直線與橢圓交于A,B兩點(異于左右頂點)(1)求△的周長;(2)求橢圓E上的點到直線距離的最大值21.(12分)已知函數(1)討論函數的單調性;(2)若對任意的,都有成立,求的取值范圍22.(10分)如圖,在四棱錐中中,平面ABCD,底面ABCD是邊長為2的正方形,.(1)求證:平面;(2)求二面角的平面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】直接根據空間向量的線性運算,即可得到答案;【詳解】,故選:A2、C【解析】根據題意、空間向量基底的概念和共線的運算即可判斷命題①②③,根據空間向量的平行關系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構成一個基底,則與共線或與其中有一個為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個向量,存在唯一的實數組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個實數使得,有,又中可以有為0的,分式沒有意義,故④錯誤.故選:C3、A【解析】根據題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.4、D【解析】根據題意,判斷點與圓的位置關系以及直線與圓的位置關系,根據直線與圓的位置關系,即可求得的最大值.【詳解】因為過過總能作圓的切線,故點在圓外或圓上,也即直線與圓相離或相切,則,即,解得,故的最大值為.故選:D.5、A【解析】根據給定條件結合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點睛】方法點睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據離心率的定義求解離心率;(2)齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.6、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.7、C【解析】根據給定的條件利用等差數列的性質計算作答【詳解】在等差數列中,因,所以.故選:C8、D【解析】直接根據.復數的乘法運算結合復數虛部的定義即可得出答案【詳解】解:,所以復數的虛部為.故選:D.9、B【解析】構造,通過求導,研究函數的單調性及極值,最值,畫出函數圖象,數形結合求出實數的取值范圍.【詳解】令,即,令,當時,,,令得:或,結合,所以,令得:,結合得:,所以在處取得極大值,也是最大值,,當時,,且,當時,,則恒成立,單調遞增,且當時,,當時,,畫出的圖象,如下圖:要想有3個零點,則故選:B10、A【解析】分析可知乙、丙的成績中必有位優(yōu)秀、位良好,結合題意進行推導,可得出結論.【詳解】由于個人中的成績中有位優(yōu)秀,位良好,甲知道乙、丙的成績,還是不知道自己的成績,則乙、丙的成績必有位優(yōu)秀、位良好,甲、丁的成績中必有位優(yōu)秀、位良好,因為給乙看丙的成績,則乙必然知道自己的成績,丁知道甲的成績后,必然知道自己的成績.故選:A.11、B【解析】根據給定條件利用空間向量垂直的坐標表示計算作答.詳解】因,且,則有,解得,所以實數的值為3.故選:B12、C【解析】結合基本不等式求得所求的最小值.【詳解】,,當且僅當時等號成立.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】根據給定信息利用系統(tǒng)抽樣的特征直接計算作答.【詳解】因系統(tǒng)抽樣是等距離抽樣,依題意,相鄰兩個編號相距,所以第四位的編號是.故答案為:2914、##4.5【解析】設為右焦點,半焦距為,,由題意,,則,所以,從而有,最后利用均值不等式即可求解.【詳解】解:設為右焦點,半焦距為,,由題意,,則,所以,即,故,當且僅當時取等,所以,故答案為:.15、【解析】根據題意由a-c=439+6371,a+c=2384+6371,求得2a即可.【詳解】設橢圓的長半軸長為a,半焦距為c,由題意得:a-c=439+6371,a+c=2384+6371,兩式相加得:2a=15565,因為橢圓上任意兩點間的距離的最大值為長軸長2a,所以衛(wèi)星運行軌道是上任意兩點間的距離的最大值為,故答案為:1556516、100【解析】根據棱柱體積公式直接可得.【詳解】故答案為:100三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)0【解析】(1)利用等差數列通項公式基本量的計算可求得,進而利用等比數列的基本量的計算即可求得數列的通項公式;(2)由(1)可知,則,觀察分析即可解【小問1詳解】設等差數列的公差為d,所以由,,得所以,從而,,所以,,q=3,所以【小問2詳解】由(1)可知,所以,當n=1時,為正值﹐所以;當n=2時,為負值﹐所以;當時,為正值﹐所以又綜上:當n=3時,有最小值018、(1)見解析(2)見解析【解析】(1)由導數得出在上的單調性;(2)設和之間的隔離直線為y=kx+b,由題設條件得出對任意恒成立,再由二次函數的性質求解即可.【小問1詳解】,當時,在上單調遞增在內單調遞增【小問2詳解】設和之間的隔離直線為y=kx+b則對任意恒成立,即對任意恒成立由對任意恒成立,得當時,則有符合題意;當時,則有對任意恒成立的對稱軸為又的對稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點睛】關鍵點睛:在解決問題一時,求了一階導得不了函數的單調性,再次求導得,進而得出在恒成立,得在上的單調性.19、(1);(2)存在,3【解析】(1)結合遞推關系可證得bn+1-bn1,且b1=1,可證數列{bn}為等差數列,據此可得數列的通項公式;(2)結合通項公式裂項有求和有,再結合條件可得,即求【詳解】(1)證明:∵,又由a1=2,得b1=1,所以數列{bn}是首項為1,公差為1的等差數列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依題意,要使對于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整數m的最小值為320、(1);(2).【解析】(1)利用橢圓的定義求△的周長;(2)設直線與橢圓相切,聯(lián)立方程求參數m,與之間的距離的最大值,即為橢圓E上的點到直線l距離的最大值.【小問1詳解】已知橢圓E方程為,所以,△的周長為,其中,所以△的周長為.【小問2詳解】設直線與直線l平行且與橢圓相切,則,得,即,令,解得,所以,與之間的距離,即橢圓E上的點到直線l距離的最大值為21、(1)答案見解析;(2).【解析】(1)求,分別討論不同范圍下的正負,分別求單調性;(2)由(1)所求的單調性,結合,分別求出的范圍再求并集即可.【詳解】解:(1)由已知定義域為,當,即時,恒成立,則在上單調遞增;當,即時,(舍)或,所以在上單調遞減,在上單調遞增.所以時,在上單調遞增;時,在上單調遞減,在上單調遞增.(2)由(1)可知,當時,在上單調遞增,若對任意的恒成立,只需,而恒成立,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論