2023-2024學(xué)年阜陽(yáng)市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2023-2024學(xué)年阜陽(yáng)市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2023-2024學(xué)年阜陽(yáng)市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2023-2024學(xué)年阜陽(yáng)市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2023-2024學(xué)年阜陽(yáng)市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年阜陽(yáng)市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓的短軸長(zhǎng)為8,且一個(gè)焦點(diǎn)是圓的圓心,則該橢圓的左頂點(diǎn)為()A B.C. D.2.橢圓的長(zhǎng)軸長(zhǎng)是()A.3 B.6C.9 D.43.函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則()A.為的極大值點(diǎn)B.為的極大值點(diǎn)C.為的極大值點(diǎn)D.為的極小值點(diǎn)4.已知雙曲線C的離心率為,,是C的兩個(gè)焦點(diǎn),P為C上一點(diǎn),,若△的面積為,則雙曲線C的實(shí)軸長(zhǎng)為()A.1 B.2C.4 D.65.已知拋物線的焦點(diǎn)為F,過(guò)點(diǎn)F分別作兩條直線,直線與拋物線C交于A、B兩點(diǎn),直線與拋物線C交于D、E兩點(diǎn),若與的斜率的平方和為2,則的最小值為()A.24 B.20C.16 D.126.已知,是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.7.平面與平面平行的充分條件可以是()A.平面內(nèi)有一條直線與平面平行B.平面內(nèi)有兩條直線分別與平面平行C.平面內(nèi)有無(wú)數(shù)條直線分別與平面平行D平面內(nèi)有兩條相交直線分別與平面平行8.過(guò)雙曲線右焦點(diǎn)F作雙曲線一條漸近線的垂線,垂足為A,與另一條漸近線交于點(diǎn)B,若,則雙曲線C的離心率為()A.或 B.2或C.或 D.2或9.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.10.已知拋物線的焦點(diǎn)為,為拋物線上第一象限的點(diǎn),若,則直線的傾斜角為()A. B.C. D.11.已知橢圓的左、右焦點(diǎn)分別是,焦距,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),若,且,則橢圓C的方程為()A. B.C. D.12.兩圓和的位置關(guān)系是()A.內(nèi)切 B.外離C.外切 D.相交二、填空題:本題共4小題,每小題5分,共20分。13.如圖,棱長(zhǎng)為2的正方體中,E,F(xiàn)分別為棱、的中點(diǎn),G為面對(duì)角線上一個(gè)動(dòng)點(diǎn),則三棱錐的外接球表面積的最小值為_(kāi)__________.14.歐陽(yáng)修在《賣油翁》中寫(xiě)道:(翁)乃取一葫蘆置于地,以錢(qián)覆其口,徐以杓酌油瀝之,自錢(qián)孔入,而錢(qián)不濕,可見(jiàn)“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢(qián)是直徑為4cm的圓,中間有邊長(zhǎng)為1cm的正方形孔,若你隨機(jī)地向銅錢(qián)上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率是_______15.如圖,四個(gè)棱長(zhǎng)為1的正方體排成一個(gè)正四棱柱,AB是一條側(cè)棱,是上底面上其余的八個(gè)點(diǎn),則集合中的元素個(gè)數(shù)為_(kāi)_____16.某中學(xué)高三(2)班甲,乙兩名同學(xué)自高中以來(lái)每次考試成績(jī)的莖葉圖如圖所示,則甲的中位數(shù)與乙的極差的和為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓C:()過(guò)點(diǎn),且離心率為(1)求橢圓C的方程;(2)過(guò)點(diǎn)()的直線l(不與x軸重合)與橢圓C交于A,B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于x軸對(duì)稱,直線AC與x軸交于點(diǎn)Q,試問(wèn)是否為定值?若是,請(qǐng)求出該定值,若不是,請(qǐng)說(shuō)明理由18.(12分)如圖所示,在三棱柱中,平面,,,,點(diǎn),分別在棱和棱上,且,,點(diǎn)為棱的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.19.(12分)已知拋物線C的對(duì)稱軸是y軸,點(diǎn)在曲線C上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過(guò)拋物線焦點(diǎn)的傾斜角為直線l與拋物線交于A、B兩點(diǎn),求線段AB的長(zhǎng)度.20.(12分)已知橢圓,離心率分別為左右焦點(diǎn),橢圓上一點(diǎn)滿足,且的面積為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作斜率為的直線交橢圓于兩點(diǎn).過(guò)點(diǎn)且平行于的直線交橢圓于點(diǎn),證明:為定值.21.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍22.(10分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)橢圓的一個(gè)焦點(diǎn)是圓的圓心,求得c,再根據(jù)橢圓的短軸長(zhǎng)為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個(gè)焦點(diǎn)是,即c=3,又橢圓的短軸長(zhǎng)為8,即b=4,所以橢圓長(zhǎng)半軸長(zhǎng)為,所以橢圓的左頂點(diǎn)為,故選:D2、B【解析】根據(jù)橢圓方程有,即可確定長(zhǎng)軸長(zhǎng).【詳解】由橢圓方程知:,故長(zhǎng)軸長(zhǎng)為6.故選:B3、A【解析】由導(dǎo)函數(shù)的圖像可得函數(shù)的單調(diào)區(qū)間,從而可求得函數(shù)的極值【詳解】由的圖像可知,在和上單調(diào)遞減,在和上單調(diào)遞增,所以為的極大值點(diǎn),和為的極小值點(diǎn),不是函數(shù)的極值點(diǎn),故選:A4、C【解析】由已知條件可得,,,再由余弦定理得,進(jìn)而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實(shí)軸長(zhǎng).【詳解】由題意知,點(diǎn)P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實(shí)軸長(zhǎng)為,故選:C.5、C【解析】設(shè)兩條直線方程,與拋物線聯(lián)立,求出弦長(zhǎng)的表達(dá)式,根據(jù)基本不等式求出最小值【詳解】拋物線的焦點(diǎn)坐標(biāo)為,設(shè)直線:,直線:,聯(lián)立得:,所以,所以焦點(diǎn)弦,同理得:,所以,因?yàn)?,所以,故選:C6、C【解析】當(dāng)平面時(shí),三棱錐體積最大,根據(jù)棱長(zhǎng)與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時(shí),三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查三棱錐與球的組合體的綜合問(wèn)題,本題的關(guān)鍵是判斷當(dāng)平面時(shí),三棱錐體積最大.7、D【解析】根據(jù)平面與平面平行的判定定理可判斷.【詳解】對(duì)A,若平面內(nèi)有一條直線與平面平行,則平面與平面可能平行或相交,故A錯(cuò)誤;對(duì)B,若平面內(nèi)有兩條直線分別與平面平行,若這兩條直線平行,則平面與平面可能平行或相交,故B錯(cuò)誤;對(duì)C,若平面內(nèi)有無(wú)數(shù)條直線分別與平面平行,若這無(wú)數(shù)條直線互相平行,則平面與平面可能平行或相交,故C錯(cuò)誤;對(duì)D,若平面內(nèi)有兩條相交直線分別與平面平行,則根據(jù)平面與平面平行的判定定理可得平面與平面平行,故D正確.故選:D.8、D【解析】求得點(diǎn)A,B的坐標(biāo),利用轉(zhuǎn)化為坐標(biāo)比求解.【詳解】不妨設(shè)直線,由題意得,解得,即;由得,即,因?yàn)?,所以,所以?dāng)時(shí),,;當(dāng)時(shí),,則,故選:D9、C【解析】當(dāng)成立,寫(xiě)出左側(cè)的表達(dá)式,當(dāng)時(shí),寫(xiě)出對(duì)應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C10、C【解析】設(shè)點(diǎn),其中,,根據(jù)拋物線的定義求得點(diǎn)的坐標(biāo),即可求得直線的斜率,即可得解.【詳解】設(shè)點(diǎn),其中,,則,可得,則,所以點(diǎn),故,因此,直線的傾斜角為.故選:C.11、A【解析】畫(huà)出圖形,利用已知條件,推出,延長(zhǎng)交橢圓于點(diǎn),得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長(zhǎng)交橢圓于點(diǎn),可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.12、A【解析】計(jì)算出圓心距,利用幾何法可判斷兩圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為,圓的圓心坐標(biāo)為,半徑為,兩圓圓心距為,則,因此,兩圓和內(nèi)切.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設(shè),球心,得到外接球半徑關(guān)于的函數(shù)關(guān)系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設(shè),球心,,又.聯(lián)立以上兩式,得,所以時(shí),,為最小值,外接球表面積最小值為.故答案為:.14、【解析】分別求出圓和正方形的面積,結(jié)合幾何概型的面積型計(jì)算公式進(jìn)行求解即可.【詳解】因?yàn)殂~錢(qián)的面積為,正方形孔的面積為,所以隨機(jī)地向銅錢(qián)上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率是.故答案為:【點(diǎn)睛】本題考查了幾何概型計(jì)算公式,考查了數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.15、1【解析】根據(jù)空間平面向量的運(yùn)算性質(zhì),結(jié)合空間向量垂直的性質(zhì)、空間向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解即可.【詳解】由圖像可知,,則因?yàn)槔忾L(zhǎng)為1,,所以,所以,故集合中的元素個(gè)數(shù)為1故答案為:116、111【解析】求出甲的中位數(shù)和乙的極差即得解.【詳解】解:由題得甲的中位數(shù)為,乙的極差為,所以它們的和為.故答案為:111三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)為定值【解析】(1)由題意可得解方程組求出,從而可得橢圓方程,(2)設(shè)直線AB:,,代入橢圓方程,消去,利用根與系數(shù)關(guān)系,再表示出直線AC的方程,從而可求出點(diǎn)Q的坐標(biāo),從而可表示出,然后化簡(jiǎn)可得結(jié)論【小問(wèn)1詳解】由題意得解得故橢圓C的方程為;【小問(wèn)2詳解】設(shè)直線AB:,,聯(lián)立消去y得,設(shè),,得,,因?yàn)辄c(diǎn)C與點(diǎn)B關(guān)于x軸對(duì)稱,所以,所以直線AC的斜率為,直線AC的方程,令,解得可得,所以,因?yàn)?,所以,所以為定值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查橢圓方程的求法,考查直線與橢圓的位置關(guān)系,解題的關(guān)鍵是將直線AB的方程代入橢圓方程中化簡(jiǎn),利用根與系數(shù)關(guān)系,結(jié)合已知條件表示出直線AC的方程,從而可求出點(diǎn)Q的坐標(biāo),考查計(jì)算能力,屬于中檔題18、(1)證明見(jiàn)解析(2)【解析】(1)構(gòu)建空間直角坐標(biāo)系,由已知確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,并應(yīng)用坐標(biāo)計(jì)算空間向量的數(shù)量積,即可證結(jié)論.(2)求的方向向量,結(jié)合(1)中面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問(wèn)1詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,,.∴,,,設(shè)為面的法向量,則,令得,∴,即,∴平面;【小問(wèn)2詳解】由(1)知:,為面的一個(gè)法向量,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.19、(1)(2)16【解析】(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為:,再代入求解即可.(2)根據(jù)焦點(diǎn)弦公式求解即可.【小問(wèn)1詳解】由題意知拋物線C的對(duì)稱軸是y軸,點(diǎn)在曲線C上,所以拋物線開(kāi)口向上,設(shè)拋物線的標(biāo)準(zhǔn)方程為:,代入點(diǎn)的坐標(biāo)得:,解得則拋物線的標(biāo)準(zhǔn)方程為:.【小問(wèn)2詳解】焦點(diǎn),則直線的方程是,設(shè),,由得,,所以,則,故.20、(1)(2)證明見(jiàn)解析【解析】(1)方法一:根據(jù)離心率以及,可得出,將條件轉(zhuǎn)化為點(diǎn)在以為直徑的圓上,即為圓與橢圓的交點(diǎn),將的面積用表示,求出,進(jìn)而求出橢圓的標(biāo)準(zhǔn)方程;方法二:根據(jù)橢圓的定義,,再根據(jù)勾股定理和直角三角形的面積公式,即可解得,又由離心率求出,則可求出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線的方程,代入橢圓方程,根據(jù)韋達(dá)定理表示出,再將直線的方程代入橢圓方程,求出,則為定值.【小問(wèn)1詳解】方法一:由離心率,得:,所以橢圓上一點(diǎn),滿足,所以點(diǎn)為圓:與橢圓的交點(diǎn),聯(lián)立方程組解得所以,解得:,所以橢圓的標(biāo)準(zhǔn)方程為:.方法二:由橢圓定義;,因?yàn)?,所以,得到:,即,又,得所以橢圓C的標(biāo)準(zhǔn)方程為:;【小問(wèn)2詳解】設(shè)直線AB的方程為:.得設(shè)過(guò)點(diǎn)且平行于的直線方程:.21、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無(wú)極小值(2)【解析】(1)利用導(dǎo)數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導(dǎo)數(shù)求出的最大值即可求解.【小問(wèn)1詳解】當(dāng)時(shí),,定義域?yàn)?,?dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減∴當(dāng)時(shí),取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無(wú)極小值【小問(wèn)2詳解】由,得,令,只需.求導(dǎo)得,所以當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴當(dāng)時(shí),取得最大值,∴k的取值范圍為22、(1)答

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論