2023-2024學年河北省秦皇島市昌黎匯文二中高二數(shù)學第一學期期末檢測試題含解析_第1頁
2023-2024學年河北省秦皇島市昌黎匯文二中高二數(shù)學第一學期期末檢測試題含解析_第2頁
2023-2024學年河北省秦皇島市昌黎匯文二中高二數(shù)學第一學期期末檢測試題含解析_第3頁
2023-2024學年河北省秦皇島市昌黎匯文二中高二數(shù)學第一學期期末檢測試題含解析_第4頁
2023-2024學年河北省秦皇島市昌黎匯文二中高二數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年河北省秦皇島市昌黎匯文二中高二數(shù)學第一學期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若,則()A. B.0C.1 D.22.當實數(shù),m變化時,的最大值是()A.3 B.4C.5 D.63.若球的半徑為,一個截面圓的面積是,則球心到截面圓心的距離是()A. B.C. D.4.已知雙曲線的一個焦點到它的一條漸近線的距離為,則()A.5 B.25C. D.5.已知雙曲線的左、右焦點分別為,,P為雙曲線C上一點,,直線與y軸交于點Q,若,則雙曲線C的漸近線方程為()A. B.C. D.6.某口罩生產(chǎn)商為了檢驗產(chǎn)品質量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3257.已知橢圓上一點到橢圓一個焦點的距離是3,則點到另一個焦點的距離為()A.9 B.7C.5 D.38.已知等差數(shù)列前項和為,且,,則此數(shù)列中絕對值最小的項為A.第5項 B.第6項C.第7項 D.第8項9.王昌齡是盛唐著名的邊塞詩人,被譽為“七絕圣手”,其《從軍行》傳誦至今“青海長云暗雪山,孤城遙望玉門關.黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉(xiāng)”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要10.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.11.已知數(shù)列中,,則()A.2 B.C. D.12.某程序框圖如圖所示,該程序運行后輸出的值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線中心在坐標原點,左右焦點分別為,漸近線分別為,過點且與垂直的直線分別交于兩點,且,則雙曲線的離心率為________14.已知某圓錐的高為4,體積為,則其側面積為________15.設雙曲線(0<a<b)的半焦距為c,直線l過(a,0),(0,b)兩點,且原點到直線l的距離為c,求雙曲線的離心率16.已知雙曲線:的右焦點為,過點向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p為“方程沒有實數(shù)根”,命題q為“”.(1)若p為真命題,求m的取值范圍;(2)若p和q有且只有一個為真命題,求m的取值范圍.18.(12分)已知數(shù)列的前n項和(1)證明是等比數(shù)列,并求的通項公式;(2)在和之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求數(shù)列的前n項和19.(12分)已知點、分別是橢圓C:)的左、右焦點,點P在橢圓C上,當∠PF1F2=時,面積達到最大,且最大值為.(1)求橢圓C的標準方程;(2)設直線l:與橢圓C交于A、B兩點,求面積的最大值.20.(12分)已知數(shù)列的前項和滿足(1)證明:數(shù)列為等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,,求數(shù)列的前項和21.(12分)已知點為拋物線的焦點,點在拋物線上,的面積為1.(1)求拋物線的標準方程;(2)設點是拋物線上異于點的一點,直線與直線交于點,過作軸的垂線交拋物線于點,求證:直線過定點.22.(10分)已知橢圓的離心率為,短軸端點到焦點的距離為2(1)求橢圓的方程;(2)設為橢圓上任意兩點,為坐標原點,且以為直徑的圓經(jīng)過原點,求證:原點到直線的距離為定值,并求出該定值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出函數(shù)的導數(shù),直接代入即可求值.【詳解】因為,所以,所以,所以.故選:D.2、D【解析】根據(jù)點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質結合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設,因直線,即表示恒過定點,根據(jù)圓的性質可得.故選:D.3、C【解析】由題意可解出截面圓的半徑,然后利用勾股定理求解球心與截面圓圓心的距離【詳解】由截面圓的面積為可知,截面圓的半徑為,則球心到截面圓心的距離為故選:C【點睛】解答本題的關鍵點在于,球心與截面圓圓心的連線垂直于截面4、B【解析】由漸近線方程得到,焦點坐標為,漸近線方程為:,利用點到直線距離公式即得解【詳解】由題意,雙曲線故焦點坐標為,漸近線方程為:焦點到它的一條漸近線的距離為:解得:故選:B5、B【解析】由題意可設且,即得a、b的數(shù)量關系,進而求雙曲線C的漸近線方程.【詳解】由題設,,,又,P為雙曲線C上一點,∴,又,為的中點,∴,即,∴雙曲線C的漸近線方程為.故選:B.6、A【解析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.7、A【解析】根據(jù)橢圓定義求得即可.【詳解】由橢圓定義知,點P到另一個焦點的距離為2×6-3=9.故選:A8、C【解析】設等差數(shù)列的首項為,公差為,,則,又,則,說明數(shù)列為遞減數(shù)列,前6項為正,第7項及后面的項為負,又,則,則在數(shù)列中絕對值最小的項為,選C.9、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,比如戰(zhàn)死沙場;即如果已知“還”,一定是已經(jīng)“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B10、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當且僅當,時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎題.11、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.12、B【解析】模擬程序運行后,可得到輸出結果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進入循環(huán)結構,1),判斷為否,進入循環(huán)結構,2),判斷為否,進入循環(huán)結構,3),判斷為否,進入循環(huán)結構,……9),判斷為否,進入循環(huán)結構,10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結果時,常模擬程序運行以得到結論.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】判斷出三角形的形狀,求得點坐標,由此列方程求得,進而求得雙曲線的離心率.【詳解】依題意設雙曲線方程為,雙曲線的漸近線方程為,右焦點,不妨設.由于,所以是線段的中點,由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡得,所以雙曲線的離心率為.故答案為:14、【解析】設該圓錐的底面半徑為r,由圓錐的體積V=πr2h,可解得r的值,再由勾股定理求得圓錐的母線長l,而側面積S=πrl,代入數(shù)據(jù)即可得解【詳解】設該圓錐的底面半徑為r,圓錐的體積V=πr2h=πr2×4=12π,解得r=3∴圓錐母線長l==5,∴側面積S=πrl=15π故答案為:15π【點睛】本題考查圓錐的側面積和體積的計算,理解圓錐的結構特征是解題的關鍵,考查學生的空間立體感和運算能力,屬于基礎題15、e=2.【解析】先求出直線的方程,利用原點到直線的距離為,,求出的值,進而根據(jù)求出離心率【詳解】由l過兩點(a,0),(0,b),得l的方程為bx+ay-ab=0.由原點到l的距離為c,得=c.將b=代入平方后整理,得162-16·+3=0.解關于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴應舍去e=.故所求離心率e=2.【點睛】本題考查雙曲線性質,考查求雙曲線的離心率常用的方法即構造出關于的等式,屬于中檔題16、【解析】由題意得雙曲線的右焦點F(c,0),設一漸近線OM的方程為,則另一漸近線ON的方程為.設,∵,∴,∴,解得∴點M的坐標為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點睛:(1)已知雙曲線的標準方程求雙曲線的漸近線方程時,只要令雙曲線的標準方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進線方程的關鍵是求出的關系,并根據(jù)焦點的位置確定出漸近線的形式,并進一步得到其方程三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)方程無根,利用根的判別式小于0求出m的取值范圍;(2)和有且只有一個為真命題,分兩種情況進行求解,最終求出結果.【小問1詳解】由方程沒有實數(shù)根,得,解得:.所以m的取值范圍為.【小問2詳解】和有且只有一個為真命題,分為下列兩種情況:①當真且假時,且,得;②當假且真時,且,得.所以,的取值范圍為.18、(1)證明見解析,(2)【解析】(1)利用及已知即可得到證明,從而求得通項公式;(2)先求出通項,再利用錯位相減法求和即可.【小問1詳解】因,當時,,所以,當時,,又,解得,所以是以2為首項,2為公比的等比數(shù)列,故【小問2詳解】因為,所以,,,,所以,所以19、(1)(2)3【解析】(1)根據(jù)焦點三角形的性質可求出,從而可得標準方程,(2)聯(lián)立直線方程和橢圓方程,消元后利用公式表示三角形面積,從而可求面積的最大值.小問1詳解】△PF1F2面積達到最大時為橢圓的上頂點或下頂點,而此時∠PF1F2=,故面積最大時為等邊三角形,故,因面積的最大值為,故,故,故橢圓的標準方程為:.【小問2詳解】設,則由可得,此時恒成立.而,到的距離為,故的面積,令,設,則,故在上為增函數(shù),故即的最大值為3.20、(1)證明見解析(2)【解析】(1)由與的關系,利用等比數(shù)列的定義證明即可;(2)由(1)求出,再利用裂項相消法求解即可【小問1詳解】當時,,,當時,,,,數(shù)列是以為首項、以為公比的等比數(shù)列【小問2詳解】由(1)得,,即,,設等差數(shù)列的公差為,則,,,,,21、(1)(2)證明見解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結合條件三點共線,可證明直線過定點,方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡,可證明直線過定點.【小問1詳解】因為點在拋物線上,所以,即,,因為,故解得,拋物線的標準方程為【小問2詳解】設直線的方程為,由,得,所以,由(1)可知當時,,此時直線的方程為,若時,因為三點共線,所以,即,又因為,,化簡可得,又,進而可得,整理得,因為所以,此時直線的方程為,直線恒過定點又直線也過點,綜上:直線過定點解法二:設方程,得若直線斜率存在時斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過定點.若直線斜率不存在時,直線方程為所以P點坐標為,M點坐標為此時直線方程為過點綜上:直線過定點.【點睛】解決直線與拋物線的綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件,明確確定直線、拋物線的條件;(2)強化有關直線與拋物線聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關系、弦長、斜率、三角形的面積等問題22、(1)(2)證明見解析,定值為【解析】(1)根據(jù)題意得到,,得到橢圓方程.(2)考慮直線斜率存在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論