2024屆北京市東城區(qū)北京第二十二中學(xué)高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第1頁(yè)
2024屆北京市東城區(qū)北京第二十二中學(xué)高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第2頁(yè)
2024屆北京市東城區(qū)北京第二十二中學(xué)高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第3頁(yè)
2024屆北京市東城區(qū)北京第二十二中學(xué)高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第4頁(yè)
2024屆北京市東城區(qū)北京第二十二中學(xué)高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆北京市東城區(qū)北京第二十二中學(xué)高二上數(shù)學(xué)期末預(yù)測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線關(guān)于直線對(duì)稱(chēng)的直線方程為()A. B.C. D.2.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則()A. B.C. D.3.、是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,,過(guò)作的角平分線的垂線,垂足為,則的長(zhǎng)為A.1 B.2C.3 D.44.過(guò)點(diǎn)A(3,3)且垂直于直線的直線方程為A. B.C. D.5.如圖,執(zhí)行該程序框圖,則輸出的的值為()A. B.2C. D.36.拋物線的準(zhǔn)線方程為,則實(shí)數(shù)的值為()A. B.C. D.7.已知橢圓與雙曲線有相同的焦點(diǎn),則的值為A. B.C. D.8.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有9.定義在區(qū)間上的函數(shù)滿足:對(duì)恒成立,其中為的導(dǎo)函數(shù),則A.B.C.D.10.若雙曲線(,)的一條漸近線經(jīng)過(guò)點(diǎn),則雙曲線的離心率為()A. B.C. D.211.設(shè)為等差數(shù)列的前項(xiàng)和,若,,則公差的值為()A. B.2C.3 D.412.用斜二測(cè)畫(huà)法畫(huà)出邊長(zhǎng)為2的正方形的直觀圖,則直觀圖的面積為()A. B.C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.在公差不為0的等差數(shù)列中,為其前n項(xiàng)和,若,則正整數(shù)______14.若,滿足約束條件,則的最大值為_(kāi)____________15.橢圓的左、右焦點(diǎn)分別為,,為坐標(biāo)原點(diǎn),則以下說(shuō)法正確的是()A.過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),則的周長(zhǎng)為8B.橢圓上存在點(diǎn),使得C.橢圓的離心率為D.為橢圓上一點(diǎn),為圓上一點(diǎn),則點(diǎn),的最大距離為316.命題的否定是____________________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),且.(1)求拋物線方程;(2)直線與拋物線相交于兩個(gè)不同的點(diǎn),為坐標(biāo)原點(diǎn),若,求實(shí)數(shù)的值;18.(12分)已知直線和直線(1)若時(shí),求a的值;(2)當(dāng)平行,求兩直線,的距離19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是一個(gè)直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點(diǎn)M和點(diǎn)N分別為PA和PC的中點(diǎn)(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點(diǎn)P到平面DBN距離;(5)設(shè)點(diǎn)N在平面BDM內(nèi)的射影為點(diǎn)H,求線段HA的長(zhǎng)20.(12分)已知函數(shù)在處取得極值確定a的值;若,討論的單調(diào)性21.(12分)已知圓C經(jīng)過(guò)、兩點(diǎn),且圓心在直線上(1)求圓C的方程;(2)若直線經(jīng)過(guò)點(diǎn)且與圓C相切,求直線的方程22.(10分)已知:在四棱錐中,底面為正方形,側(cè)棱平面,點(diǎn)為中點(diǎn),.(1)求證:平面平面;(2)求直線與平面所成角大??;(3)求點(diǎn)到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先聯(lián)立方程得,再求得直線的點(diǎn)關(guān)于直線對(duì)稱(chēng)點(diǎn)的坐標(biāo)為,進(jìn)而根據(jù)題意得所求直線過(guò)點(diǎn),,進(jìn)而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點(diǎn)為設(shè)直線的點(diǎn)關(guān)于直線對(duì)稱(chēng)點(diǎn)的坐標(biāo)為,所以,解得所以直線關(guān)于直線對(duì)稱(chēng)的直線過(guò)點(diǎn),所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C2、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個(gè)單位長(zhǎng)度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A3、A【解析】延長(zhǎng)交延長(zhǎng)線于N,則選:A.【點(diǎn)睛】涉及兩焦點(diǎn)問(wèn)題,往往利用橢圓定義進(jìn)行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問(wèn)題,兩者切入點(diǎn)為橢圓定義.4、D【解析】過(guò)點(diǎn)A(3,3)且垂直于直線的直線斜率為,代入過(guò)的點(diǎn)得到.故答案為D.5、B【解析】根據(jù)程序流程圖依次算出的值即可.【詳解】,第一次執(zhí)行,,第二次執(zhí)行,,第三次執(zhí)行,,所以輸出.故選:B6、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B7、C【解析】根據(jù)題意可知,結(jié)合的條件,可知,故選C考點(diǎn):橢圓和雙曲線性質(zhì)8、C【解析】全稱(chēng)命題的否定是特稱(chēng)命題【詳解】根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題,所以命題“,均有”的否定為“,使得”故選:C9、D【解析】分別構(gòu)造函數(shù),,,,利用導(dǎo)數(shù)研究其單調(diào)性即可得出【詳解】令,,,,恒成立,,,,函數(shù)在上單調(diào)遞增,,令,,,,恒成立,,函數(shù)在上單調(diào)遞減,,.綜上可得:,故選:D【點(diǎn)睛】函數(shù)的性質(zhì)是高考的重點(diǎn)內(nèi)容,本題考查的是利用函數(shù)的單調(diào)性比較大小的問(wèn)題,通過(guò)題目中給定的不等式,分別構(gòu)造兩個(gè)不同的函數(shù)求導(dǎo)判出單調(diào)性從而比較函數(shù)值得大小關(guān)系.在討論函數(shù)的性質(zhì)時(shí),必須堅(jiān)持定義域優(yōu)先的原則.對(duì)于函數(shù)實(shí)際應(yīng)用問(wèn)題,注意挖掘隱含在實(shí)際中的條件,避免忽略實(shí)際意義對(duì)定義域的影響10、A【解析】先求出漸近線方程,進(jìn)而將點(diǎn)代入直線方程得到a,b關(guān)系,進(jìn)而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過(guò)點(diǎn),則,.故選:A.11、C【解析】根據(jù)等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】,故選:C12、A【解析】畫(huà)出直觀圖,求出底和高,進(jìn)而求出面積.【詳解】如圖,,,,過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,則,所以直觀圖是底為2、高為的平行四邊形,所以面積為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】設(shè)等差數(shù)列公差為d,根據(jù)等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式及可求k.【詳解】設(shè)等差數(shù)列公差為d,∵,∴,即,即,∴.故答案為:13.14、6【解析】首先根據(jù)題中所給的約束條件,畫(huà)出相應(yīng)的可行域,再將目標(biāo)函數(shù)化成斜截式,之后在圖中畫(huà)出直線,在上下移動(dòng)的過(guò)程中,結(jié)合的幾何意義,可以發(fā)現(xiàn)直線過(guò)B點(diǎn)時(shí)取得最大值,聯(lián)立方程組,求得點(diǎn)B的坐標(biāo)代入目標(biāo)函數(shù)解析式,求得最大值.【詳解】根據(jù)題中所給的約束條件,畫(huà)出其對(duì)應(yīng)的可行域,如圖所示:由,可得,畫(huà)出直線,將其上下移動(dòng),結(jié)合的幾何意義,可知當(dāng)直線在y軸截距最大時(shí),z取得最大值,由,解得,此時(shí),故答案為6.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問(wèn)題,在求解的過(guò)程中,首先需要正確畫(huà)出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫(huà)出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.15、ABD【解析】結(jié)合橢圓定義判斷A選項(xiàng)的正確性,結(jié)合向量數(shù)量積的坐標(biāo)運(yùn)算判斷B選項(xiàng)的正確性,直接法求得橢圓的離心率,由此判斷C選項(xiàng)的正確性,結(jié)合兩點(diǎn)間距離公式判斷D選項(xiàng)的正確性.【詳解】對(duì)于選項(xiàng):由橢圓定義可得:,因此的周長(zhǎng)為,所以選項(xiàng)正確;對(duì)于選項(xiàng):設(shè),則,且,又,,所以,,因此,解得,,故選項(xiàng)正確;對(duì)于選項(xiàng):因?yàn)?,,所以,即,所以離心率,所以選項(xiàng)錯(cuò)誤;對(duì)于選項(xiàng):設(shè),,則點(diǎn)到圓的圓心的距離為,因?yàn)?,所以,所以選項(xiàng)正確,故選:ABD16、##【解析】根據(jù)全稱(chēng)量詞命題的否定的知識(shí)寫(xiě)出正確答案.【詳解】全稱(chēng)量詞命題的否定是存在量詞命題,要注意否定結(jié)論,所以命題否定是:故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)根據(jù)拋物線過(guò)點(diǎn),且,利用拋物線的定義求解;(2)設(shè),聯(lián)立,根據(jù),由,結(jié)合韋達(dá)定理求解.【小問(wèn)1詳解】解:由拋物線過(guò)點(diǎn),且,得所以拋物線方程為;【小問(wèn)2詳解】設(shè),聯(lián)立得,,,,則,,即,解得或,又當(dāng)時(shí),直線與拋物線的交點(diǎn)中有一點(diǎn)與原點(diǎn)重合,不符合題意,故舍去;所以實(shí)數(shù)的值為.18、(1)(2)【解析】(1)由垂直可得兩直線系數(shù)關(guān)系,即可得關(guān)于實(shí)數(shù)a的方程.(2)由平行可得兩直線系數(shù)關(guān)系,即可得關(guān)于實(shí)數(shù)a的方程,進(jìn)而可求出兩直線的方程,結(jié)合直線的距離公式即可求出直線與之間的距離.【小問(wèn)1詳解】∵,且,∴,解得【小問(wèn)2詳解】∵,,且,∴且,解得,∴,即∴直線間的距離為19、(1)證明見(jiàn)解析(2)(3)(4)(5)【解析】(1)以為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標(biāo),再求出平面的法向量,利用向量法,求出點(diǎn)到平面的距離;(5)設(shè)點(diǎn)在平面內(nèi)的射影為點(diǎn),從而表示出的坐標(biāo),求出到平面的距離,列出方程組,求出點(diǎn)坐標(biāo),從而求出的長(zhǎng)度.【小問(wèn)1詳解】四棱錐,底面是一個(gè)直角梯形,,平面,所以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,,,,,,,,設(shè)平面的法向量,所以,,取,則,所以,平面,所以直線平面.【小問(wèn)2詳解】,,,設(shè)平面的法向量,則,即,取,則,設(shè)直線與平面所成的角為,則,所以,所以直線與平面所成角的余弦值為.【小問(wèn)3詳解】設(shè)平面的法向量為,則,即,取,得,平面的法向量,設(shè)二面角的平面角為,則,所以,所以二面角的正弦值為.【小問(wèn)4詳解】,平面的法向量,所以點(diǎn)到平面的距離為.【小問(wèn)5詳解】設(shè)點(diǎn)在平面的射影為點(diǎn),則,所以點(diǎn)到平面的距離為,根據(jù),得解得,,,或者,,(舍)所以.20、(1)(2)在和內(nèi)為減函數(shù),在和內(nèi)為增函數(shù)【解析】(1)對(duì)求導(dǎo)得,因?yàn)樵谔幦〉脴O值,所以,即,解得;(2)由(1)得,,故,令,解得或,當(dāng)時(shí),,故為減函數(shù),當(dāng)時(shí),,故為增函數(shù),當(dāng)時(shí),,故為減函數(shù),當(dāng)時(shí),,故為增函數(shù),綜上所知:和是函數(shù)單調(diào)減區(qū)間,和是函數(shù)的單調(diào)增區(qū)間.21、(1);(2)【解析】(1)根據(jù)圓心在弦的垂直平分線上,先求出弦的垂直平分線的方程與聯(lián)立可求得圓心坐標(biāo),再用兩點(diǎn)間的距離公式求得半徑,進(jìn)而求得圓的方程;(2)當(dāng)直線斜率不存在時(shí),與圓相切,方程為;當(dāng)直線斜率存在時(shí),設(shè)斜率為,寫(xiě)出其點(diǎn)斜式方程,利用圓心到直線的距離等于半徑建立方程求解出的值.試題解析:(1)依題意知線段的中點(diǎn)坐標(biāo)是,直線的斜率為,故線段的中垂線方程是即,解方程組得,即圓心的坐標(biāo)為,圓的半徑,故圓的方程是(2)若直線斜率不存在,則直線方程是,與圓相離,不合題意;若直線斜率存在,可設(shè)直線方程是,即,因?yàn)橹本€與圓相切,所以有,解得或所以直線的方程是或.22、(1)證明見(jiàn)解析;(2);(3).【解析】(1)以AB所在的直線為x軸,以AD所在的直線為y軸,以AP所在的直線為z軸,建立如圖所示的直角坐標(biāo)系,求出平面PCD的法向量為,平面的法向量為,即得證;(2)設(shè)直線與平面所成角為,利用向量法求解;(3)利用向量法求點(diǎn)到平面的距離.【小問(wèn)1詳解】證明:PA平面ABCD,ABCD為正方形,以AB所在的直線為x軸,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論