2024屆江西省贛州市南康中學(xué)、平川中學(xué)、信豐中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第1頁
2024屆江西省贛州市南康中學(xué)、平川中學(xué)、信豐中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第2頁
2024屆江西省贛州市南康中學(xué)、平川中學(xué)、信豐中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第3頁
2024屆江西省贛州市南康中學(xué)、平川中學(xué)、信豐中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第4頁
2024屆江西省贛州市南康中學(xué)、平川中學(xué)、信豐中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江西省贛州市南康中學(xué)、平川中學(xué)、信豐中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,且,那()A.19 B.31C.52 D.1042.已知橢圓的右焦點(diǎn)為F,短軸的一個(gè)端點(diǎn)為P,直線與橢圓相交于A、B兩點(diǎn).若,點(diǎn)P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.3.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.4.已知數(shù)列滿足,在任意相鄰兩項(xiàng)與(k=1,2,…)之間插入個(gè)2,使它們和原數(shù)列的項(xiàng)構(gòu)成一個(gè)新的數(shù)列.記為數(shù)列的前n項(xiàng)和,則的值為()A.162 B.163C.164 D.1655.已知F1(-5,0),F(xiàn)2(5,0),動(dòng)點(diǎn)P滿足|PF1|-|PF2|=2a,當(dāng)a為3和5時(shí),點(diǎn)P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線6.某次生物實(shí)驗(yàn)6個(gè)小組的耗材質(zhì)量(單位:千克)分別為1.71,1.58,1.63,1.43,1.85,1.67,則這組數(shù)據(jù)的中位數(shù)是()A.1.63 B.1.67C.1.64 D.1.657.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側(cè)棱與底面垂直,若點(diǎn)C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.8.?dāng)?shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)分別為,,,則△ABC的歐拉線方程為()A. B.C. D.9.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A. B.1C. D.10.函數(shù)在上單調(diào)遞增,則k的取值范圍是()A B.C. D.11.的展開式中的系數(shù)是()A. B.C. D.12.德國數(shù)學(xué)家米勒曾提出最大視角問題,這一問題一般的描述是:已知點(diǎn)A、B是的ON邊上的兩個(gè)定點(diǎn),C是OM邊上的一個(gè)動(dòng)點(diǎn),當(dāng)C在何處時(shí),最大?問題的答案是:當(dāng)且僅當(dāng)?shù)耐饨訄A與邊OM相切于點(diǎn)C時(shí),最大.人們稱這一命題為米勒定理.已知點(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0),R是y軸正半軸上的一動(dòng)點(diǎn),當(dāng)最大時(shí),點(diǎn)R的縱坐標(biāo)為()A.1 B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若過點(diǎn)作圓的切線,則切線方程為___________.14.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____15.已知球面上的三點(diǎn)A,B,C滿足,,,球心到平面ABC的距離為,則球的表面積為______16.在中,,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)a,b是實(shí)數(shù),若橢圓過點(diǎn),且離心率為.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)過橢圓E的上頂點(diǎn)P分別作斜率為,的兩條直線與橢圓交于C,D兩點(diǎn),且,試探究過C,D兩點(diǎn)的直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);否則,說明理由.18.(12分)已知(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知鈍角內(nèi)角A,B,C的對(duì)邊長分別a,b,c,若,,.求a的值19.(12分)同時(shí)拋擲兩顆骰子,觀察向上點(diǎn)數(shù).(1)試表示“出現(xiàn)兩個(gè)1點(diǎn)”這個(gè)事件相應(yīng)的樣本空間的子集;(2)求出現(xiàn)兩個(gè)1點(diǎn)”的概率;(3)求“點(diǎn)數(shù)之和為7”的概率.20.(12分)已知數(shù)列為各項(xiàng)均為正數(shù)的等比數(shù)列,若(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和21.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(diǎn)(1)證明:(2)已知,求二面角的余弦值22.(10分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)等比數(shù)列的定義,結(jié)合等比數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以有,因此?shù)列是公比的等比數(shù)列,因?yàn)?,所以,故選:D2、D【解析】設(shè)橢圓的左焦點(diǎn)為,由題可得,由點(diǎn)P到直線l的距離不小于可得,進(jìn)而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點(diǎn)為,P為短軸的上端點(diǎn),連接,如圖所示:由橢圓的對(duì)稱性可知,A,B關(guān)于原點(diǎn)對(duì)稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點(diǎn)P到直線l距離:,解得:,即,∴,∴.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.3、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C4、C【解析】確定數(shù)列的前70項(xiàng)含有的前6項(xiàng)和64個(gè)2,從而求出前70項(xiàng)和.【詳解】,其中之間插入2個(gè)2,之間插入4個(gè)2,之間插入8個(gè)2,之間插入16個(gè)2,之間插入32個(gè)2,之間插入64個(gè)2,由于,,故數(shù)列的前70項(xiàng)含有的前6項(xiàng)和64個(gè)2,故故選:C5、D【解析】由雙曲線定義結(jié)合參數(shù)a的取值分類討論而得.【詳解】依題意得,當(dāng)時(shí),,且,點(diǎn)P的軌跡為雙曲線的右支;當(dāng)時(shí),,故點(diǎn)P的軌跡為一條射線.故選D.故選:D6、D【解析】將已有數(shù)據(jù)從小到大排序,根據(jù)中位數(shù)的定義確定該組數(shù)據(jù)的中位數(shù).【詳解】由題設(shè),將數(shù)據(jù)從小到大排序可得:,∴中位數(shù)為.故選:D.7、A【解析】先由等面積法求得的長,再以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,運(yùn)用線面角的向量求解方法可得答案【詳解】如圖,連接交于點(diǎn),過點(diǎn)作于,則平面,則,設(shè),則,則根據(jù)三角形面積得,代入解得以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系則,,設(shè)平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:8、A【解析】求出重心坐標(biāo),求出AB邊上高和AC邊上高所在直線方程,聯(lián)立兩直線可得垂心坐標(biāo),即可求出歐拉線方程.【詳解】由題可知,△ABC的重心為,可得直線AB的斜率為,則AB邊上高所在的直線斜率為,則方程為,直線AC的斜率為,則AC邊上高所在的直線斜率為2,則方程為,聯(lián)立方程可得△ABC的垂心為,則直線GH斜率為,則可得直線GH方程為,故△ABC的歐拉線方程為.故選:A.9、D【解析】,,所以拋物線的焦點(diǎn)到其準(zhǔn)線的距離是,故選D.10、A【解析】對(duì)函數(shù)求導(dǎo),由于函數(shù)在給定區(qū)間上單調(diào)遞增,故恒成立.【詳解】由題意可得,,,,.故選:A11、B【解析】根據(jù)二項(xiàng)式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B12、C【解析】由題意,借助米勒定理,可設(shè)出坐標(biāo),表示出的外接圓方程,然后在求解點(diǎn)R的縱坐標(biāo).【詳解】因?yàn)辄c(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0)是x軸正半軸上的兩個(gè)定點(diǎn),點(diǎn)R是y軸正半軸上的一動(dòng)點(diǎn),根據(jù)米勒定理,當(dāng)?shù)耐饨訄A與y軸相切時(shí),最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過的外接圓圓心,所以弦的中點(diǎn)為(3,0),故弦中點(diǎn)的橫坐標(biāo)即為的外接圓半徑,即,由垂徑定理可得,圓心坐標(biāo)為,故的外接圓的方程為,所以點(diǎn)R的縱坐標(biāo)為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】根據(jù)圓心到切線的距離等于圓的半徑即可求解.【詳解】由題意可知,,故在圓外,則過點(diǎn)做圓的切線有兩條,且切線斜率必存在,設(shè)切線為,即,則圓心到直線的距離,解得或,故切線方程為或故答案為:或14、【解析】由已知求得母線長,代入圓錐側(cè)面積公式求解【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π故答案為2π【點(diǎn)睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.15、【解析】由題意可知為直角三角形,求出外接圓的半徑,可求出球的半徑,然后求球的表面積.【詳解】由題意,,,,則,可知,所以外接圓的半徑為,因?yàn)榍蛐牡狡矫娴木嚯x為,所以球的半徑為:,所以球的表面積為:.故答案為:.16、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因?yàn)樵谥校?,,,所以由余弦定理可得,所以,即,則故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)過定點(diǎn),坐標(biāo)為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【小問1詳解】因?yàn)闄E圓離心率為,所以有.橢圓過點(diǎn),所以,由可解:,所以該橢圓方程為:;【小問2詳解】由(1)可知:,設(shè)直線的方程為:,若,由橢圓的對(duì)稱性可知:,不符合題意,當(dāng)時(shí),直線的方程與橢圓方程聯(lián)立得:,設(shè),,,因?yàn)椋?,把代入得:,所以有或,解得:或,?dāng)時(shí),直線,直線恒過定點(diǎn),此時(shí)與點(diǎn)重合,不符合題意,當(dāng)時(shí),,直線恒過點(diǎn),當(dāng)直線不存在斜率時(shí),此時(shí),,因?yàn)椋?,兩點(diǎn)不在橢圓上,不符合題意,綜上所述:過C,D兩點(diǎn)的直線過定點(diǎn),定點(diǎn)坐標(biāo)為.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:根據(jù)一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.18、(1),;(2)2.【解析】(1)利用三角恒等變換公式化簡函數(shù),再利用三角函數(shù)性質(zhì)計(jì)算作答.(2)由(1)的結(jié)論及已知求出角C,再利用余弦定理計(jì)算判斷作答.【小問1詳解】依題意,,則的最小正周期,由,解得,則在上單調(diào)遞增,所以的最小正周期為,遞增區(qū)間為.【小問2詳解】由(1)知,,即,在中,,,則,即,,于是得,解得,在中,由余弦定理得:,即,解得或,當(dāng)時(shí),,為直角三角形,與是鈍角三角形矛盾,當(dāng)時(shí),,,此時(shí),是鈍角三角形,則,所以a的值是2.19、(1)(2)(3)【解析】(1)由題意直接寫出基本事件即可得出答案.(2)樣本空間一共有個(gè)基本事件,由(1)可得答案.(3)列出“點(diǎn)數(shù)之和為7”的基本事件,從而可得答案.【小問1詳解】“同時(shí)拋擲兩顆骰子”的樣本空間是{1,2,…,6;1,2,…,6},其中i、j分別是拋擲第一顆與第二顆骰子所得的點(diǎn)數(shù).將“出現(xiàn)兩個(gè)1點(diǎn)”這個(gè)事件用A表示,則事件A就是子集.【小問2詳解】樣本空間一共有個(gè)基本事件,它們是等可能的,從而“出現(xiàn)兩個(gè)1點(diǎn)”的概率為.小問3詳解】將“點(diǎn)數(shù)之和為7”這個(gè)事件用B表示,則{,,,,,},事件B共有6個(gè)基本事件,從而“點(diǎn)數(shù)之和為7”的概率為.20、(1)(2)【解析】(1)利用等比數(shù)列通項(xiàng)公式列出方程組,可求解,,從而寫出;(2)化簡數(shù)列,裂項(xiàng)相消法求和即可.【小問1詳解】設(shè)數(shù)列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問2詳解】∵,∴∴∴21、(1)詳見解析(2)【解析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直,即可證明線線垂直;(2)利用垂直關(guān)系,建立空間直角坐標(biāo)系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點(diǎn),連結(jié),,,因?yàn)椋?,因?yàn)槠矫嫫矫妫矫嫫矫?,所以平面,且平面,所以,又因?yàn)榈酌鏁r(shí)菱形,所以,又因?yàn)辄c(diǎn)分別為的中點(diǎn),所以,所以,且,所以平面,又因?yàn)槠矫?,所以;【小?詳解】由(1)可知,平面,連結(jié),因?yàn)椋?,點(diǎn)為的中點(diǎn),所以,則兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論