安徽省合肥市示范初中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁
安徽省合肥市示范初中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁
安徽省合肥市示范初中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁
安徽省合肥市示范初中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁
安徽省合肥市示范初中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

安徽省合肥市示范初中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.52.如圖,在平行六面體中,()A. B.C. D.3.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.4.設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)是B,則等于()A.4 B.C. D.25.已知m,n表示兩條不同直線,表示兩個(gè)不同平面.設(shè)有兩個(gè)命題::若,則;:若,則.則下列命題中為真命題的是()A. B.C. D.6.雙曲線:的漸近線與圓:在第一、二象限分別交于點(diǎn)、,若點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.C. D.7.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使8.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f(x)g(x)+f(x)g(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)9.直線在y軸上的截距是A. B.C. D.10.北京大興國際機(jī)場(chǎng)的顯著特點(diǎn)之一是各種彎曲空間的運(yùn)用,在數(shù)學(xué)上用曲率刻畫空間彎曲性.規(guī)定:多面體的頂點(diǎn)的曲率等于與多面體在該點(diǎn)的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點(diǎn)的曲率均為零,多面體的總曲率等于該多面體各頂點(diǎn)的曲率之和.例如:正四面體在每個(gè)頂點(diǎn)有個(gè)面角,每個(gè)面角是,所以正四面體在每個(gè)頂點(diǎn)的曲率為,故其總曲率為.給出下列三個(gè)結(jié)論:①正方體在每個(gè)頂點(diǎn)的曲率均為;②任意四棱錐總曲率均為;③若某類多面體的頂點(diǎn)數(shù),棱數(shù),面數(shù)滿足,則該類多面體的總曲率是常數(shù).其中,所有正確結(jié)論的序號(hào)是()A.①② B.①③C.②③ D.①②③11.已知橢圓的左、右焦點(diǎn)分別是,焦距,過點(diǎn)的直線與橢圓交于兩點(diǎn),若,且,則橢圓C的方程為()A. B.C. D.12.已知兩定點(diǎn)和,動(dòng)點(diǎn)在直線上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的短軸的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在點(diǎn)處的切線為直線l,則l與坐標(biāo)軸圍成的三角形面積為___________.14.寫出一個(gè)與橢圓有公共焦點(diǎn)的橢圓方程__________15.用組成所有沒有重復(fù)數(shù)字的五位數(shù)中,滿足與相鄰并且與不相鄰的五位數(shù)共有____________個(gè).(結(jié)果用數(shù)值表示)16.設(shè)數(shù)列滿足且,則________.數(shù)列的通項(xiàng)=________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為數(shù)列的前n項(xiàng)和,,且,,其中為常數(shù).(1)求證:數(shù)列為等差數(shù)列;(2)是否存在,使得是等差數(shù)列?并說明理由.18.(12分)已知O為坐標(biāo)原點(diǎn),、為橢圓C的左、右焦點(diǎn),,P為橢圓C的上頂點(diǎn),以P為圓心且過、的圓與直線相切(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)作直線l,交橢圓C于M,N兩點(diǎn)(l與x軸不重合),在x軸上是否存在一點(diǎn)T,使得直線TM與TN的斜率之積為定值?若存在,請(qǐng)求出所有滿足條件的點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由19.(12分)已知橢圓:,的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),的離心率為,的離心率為,點(diǎn)在上,過點(diǎn)E和,分別作直線交橢圓于,和,點(diǎn),如圖.(1)求,的方程;(2)求證:直線和的斜率之積為定值;(3)求證:為定值.20.(12分)已知函數(shù)(1)若,求曲線在處的切線方程(2)討論函數(shù)的單調(diào)性21.(12分)如圖,在直三棱柱中,,是中點(diǎn).(1)求點(diǎn)到平面的的距離;(2)求平面與平面夾角的余弦值;22.(10分)已知橢圓的離心率,過橢圓C的焦點(diǎn)且垂直于x軸的直線截橢圓所得到的線段的長度為1(1)求橢圓C的方程;(2)直線交橢圓C于A、B兩點(diǎn),若y軸上存在點(diǎn)P,使得是以AB為斜邊的等腰直角三角形,求的面積的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】作出不等式組對(duì)應(yīng)的可行域,再利用數(shù)形結(jié)合分析求解.【詳解】解:作出不等式組對(duì)應(yīng)的可行域?yàn)槿鐖D所示的陰影部分區(qū)域,由得,它表示斜率為縱截距為的直線系,當(dāng)直線平移到點(diǎn)時(shí),縱截距最大,最大.聯(lián)立直線方程得得.所以.故選:C2、B【解析】由空間向量的加法的平行四邊形法則和三角形法則,可得所求向量【詳解】連接,可得,又,所以故選:B.3、D【解析】由題設(shè)可得求出橢圓參數(shù),即可得方程.【詳解】由題設(shè),知:,可得,則,∴C的方程為.故選:D.4、A【解析】求出點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)是B,再利用兩點(diǎn)之間的距離即可求得結(jié)果.【詳解】點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)是故選:A5、B【解析】利用直線與平面,平面與平面的位置關(guān)系判斷2個(gè)命題的真假,再利用復(fù)合命題的真值表判斷選項(xiàng)的正誤即可【詳解】,表示兩條不同直線,,表示兩個(gè)不同平面:若,,則也可能,也可能與相交,所以是假命題,為真命題;:令直線的方向向量為,直線的方向向量為,若,則,則,所以是真命題,所以為假命題;所以為假命題,是真命題,為假命題,是真命題,所以為假命題故選:6、B【解析】由,得點(diǎn)為三角形的重心,可得,即可求解.【詳解】如圖:設(shè)雙曲線的焦距為,與軸交于點(diǎn),由題可知,則,由,得點(diǎn)為三角形的重心,可得,即,,即,解得.故選:B【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),三角形的重心的向量表示,屬于中檔題.7、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結(jié)論否定,所以“,使”的否定為“,有”,故選:B.8、A【解析】構(gòu)造函數(shù)h(x)=f(x)g(x),由已知得當(dāng)x<0時(shí),h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因?yàn)閒(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,得到f(x)g(x)<0不等式的解集【詳解】設(shè)h(x)=f(x)g(x),因?yàn)楫?dāng)x<0時(shí),f(x)g(x)+f(x)g(x)<0,所以當(dāng)x<0時(shí),h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因?yàn)閒(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,因?yàn)閒(﹣1)=0,所以函數(shù)y=h(x)的大致圖象如下:所以等式f(x)g(x)<0的解集為(﹣1,0)∪(1,+∞)故選A【點(diǎn)睛】本題考查導(dǎo)數(shù)乘法法則、導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系;奇函數(shù)的單調(diào)性在對(duì)稱區(qū)間上一致,屬于中檔題9、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.10、D【解析】根據(jù)曲率的定義依次判斷即可.【詳解】①根據(jù)曲率的定義可得正方體在每個(gè)頂點(diǎn)的曲率為,故①正確;②由定義可得多面體的總曲率頂點(diǎn)數(shù)各面內(nèi)角和,因?yàn)樗睦忮F有5個(gè)頂點(diǎn),5個(gè)面,分別為4個(gè)三角形和1個(gè)四邊形,所以任意四棱錐的總曲率為,故②正確;③設(shè)每個(gè)面記為邊形,則所有的面角和為,根據(jù)定義可得該類多面體的總曲率為常數(shù),故③正確.故選:D.11、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點(diǎn),得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點(diǎn),可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.12、B【解析】根據(jù)題意,點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點(diǎn)共線時(shí),長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出切線方程,分別得到直線與x、y軸交點(diǎn),即可求出三角形的面積.【詳解】由函數(shù)可得:函數(shù),所以,.所以切線l:,即.令,得到;令,得到;所以l與坐標(biāo)軸圍成的三角形面積為.故答案為:.14、(答案不唯一)【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程,以及分析即可【詳解】由題可知橢圓的形式應(yīng)為(,且),可取故答案為:(答案不唯一)15、【解析】由題意,先利用捆綁法排列和,再利用插空法排列和,即可得答案.【詳解】因?yàn)闈M足與相鄰并且與不相鄰,則將捆綁,內(nèi)部排序得,再對(duì)和全排列得,利用插空法將和插空得,所以滿足題意得五位數(shù)有.故答案為:16、①.5②.【解析】設(shè),根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結(jié)合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當(dāng)時(shí),,,解得,設(shè),則,且,所以數(shù)列是等差數(shù)列,公差為,首項(xiàng)為,所以,即,所以,當(dāng)時(shí),可得,其中也滿足,所以數(shù)列的通項(xiàng)公式為.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)存在時(shí)是等差數(shù)列,詳見解析.【解析】(1)利用與的關(guān)系可得,再結(jié)合條件即證;(2)由題可得,,若是等差數(shù)列,可得,進(jìn)而可求數(shù)列的通項(xiàng)公式,即證.【小問1詳解】∵,∴,∴,又,∴,∴,∴數(shù)列為等差數(shù)列;【小問2詳解】∵,,∴,又,∴,若是等差數(shù)列,則,即,解得,當(dāng)時(shí),由,∴數(shù)列的奇數(shù)項(xiàng)構(gòu)成的數(shù)列為首項(xiàng)為1,公差為2的等差數(shù)列,∴,即,為奇數(shù),∴數(shù)列的偶數(shù)項(xiàng)構(gòu)成的數(shù)列為首項(xiàng)為2,公差為2的等差數(shù)列,∴,即,為偶數(shù),綜上可得,當(dāng)時(shí),,,故存在時(shí),使數(shù)列是等差數(shù)列.18、(1);(2)存在;.【解析】(1)根據(jù)給定條件求出a,c,b即可作答.(2)聯(lián)立直線l與橢圓C的方程,利用斜率坐標(biāo)公式并結(jié)合韋達(dá)定理計(jì)算即可推理作答.【小問1詳解】依題意,,,,由橢圓定義知:橢圓長軸長,即,而半焦距,即有短半軸長,所以橢圓C的標(biāo)準(zhǔn)方程為:【小問2詳解】依題意,設(shè)直線l方程為,由消去x并整理得,設(shè),,則,,假定存在點(diǎn),直線TM與TN的斜率分別為,,,要使為定值,必有,即,當(dāng)時(shí),,,當(dāng)時(shí),,,所以存在點(diǎn),使得直線TM與TN的斜率之積為定值【點(diǎn)睛】方法點(diǎn)睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值19、(1):;:(2)證明見解析(3)證明見解析【解析】(1)利用待定系數(shù)法,根據(jù)條件先求曲線的方程,再求曲線的方程;(2)首先設(shè),表示直線和的斜率之積,即可求解定值;(3)首先表示直線與方程聯(lián)立消,利用韋達(dá)定理表示弦長,以及利用直線和的斜率關(guān)系,表示弦長,并證明為定值.【小問1詳解】由題設(shè)知,橢圓離心率為解得∴,∵橢圓的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),∴設(shè)雙曲線:∴的離心率為解得.∴::;【小問2詳解】證明:∵點(diǎn)在上∴設(shè)則,∴.∴直線和的斜率之積為定值1;【小問3詳解】證明:設(shè)直線和的斜率分別為,,則設(shè),:與方程聯(lián)立消得“*”則,是“*”的二根則則同理∴.20、(1)(2)答案見解析【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求得切線斜率,結(jié)合切點(diǎn)可得切線方程;(2)求導(dǎo)后,分別在、和的情況下,根據(jù)的正負(fù)可得的單調(diào)性.【小問1詳解】當(dāng)時(shí),,,,又,在處的切線方程為:,即;【小問2詳解】,令,解得:,;當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),若或,則;若,則;在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),若或,則;若,則;在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述:當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減.21、(1)(2)【解析】(1)以為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,求出平面的法向量為,再利用公式計(jì)算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計(jì)算即可小問1詳解】解:(1)以為原點(diǎn),為軸,為軸,為軸建立空

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論