版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
漢中市重點(diǎn)中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)(且,)的一個(gè)極值點(diǎn)為2,則的最小值為()A. B.C. D.72.命題“存在,使得”為真命題的一個(gè)充分不必要條件是()A. B.C. D.3.已知雙曲線的離心率,點(diǎn)是拋物線上的一動(dòng)點(diǎn),到雙曲線的上焦點(diǎn)的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.4.已知等差數(shù)列中,,則()A.15 B.30C.45 D.605.中國(guó)古代數(shù)學(xué)名著九章算術(shù)中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之栗五斗羊主曰:“我羊食半馬”馬主曰:“我馬食半?!苯裼斨?,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗的主人要求賠償5斗栗羊主人說:“我羊所吃的禾苗只有馬的一半”馬主人說:“我馬所吃的禾苗只有牛的一半”打算按此比率償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還栗a升,b升,c升,1斗為10升,則下列判斷正確的是A.a,b,c依次成公比為2的等比數(shù)列,且B.a,b,c依次成公比為2的等比數(shù)列,且C.a,b,c依次成公比為的等比數(shù)列,且D.a,b,c依次成公比為的等比數(shù)列,且6.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.7.我國(guó)新冠肺炎疫情防控進(jìn)入常態(tài)化,各地有序進(jìn)行疫苗接種工作,下面是我國(guó)甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量8.拋擲一枚質(zhì)地均勻的骰子兩次,記{兩次的點(diǎn)數(shù)均為奇數(shù)},{兩次的點(diǎn)數(shù)之和為8},則()A. B.C. D.9.直線與曲線相切于點(diǎn),則()A. B.C. D.10.已知橢圓的兩個(gè)焦點(diǎn)分別為,且平行于軸的直線與橢圓交于兩點(diǎn),那么的值為()A. B.C. D.11.直線的傾斜角為()A. B.C. D.12.如圖,、分別為橢圓的左、右焦點(diǎn),為橢圓上的點(diǎn),是線段上靠近的三等分點(diǎn),為正三角形,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.14.長(zhǎng)方體中,,已知點(diǎn)與三點(diǎn)共線且,則點(diǎn)到平面的距離為________15.將參加冬季越野跑的名選手編號(hào)為:,采用系統(tǒng)抽樣方法抽取一個(gè)容量為的樣本,把編號(hào)分為組后,第一組的到這個(gè)編號(hào)中隨機(jī)抽得的號(hào)碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________16.已知橢圓的右頂點(diǎn)為P,右焦點(diǎn)F與拋物線的焦點(diǎn)重合,的頂點(diǎn)與的中心O重合.若與相交于點(diǎn)A,B,且四邊形為菱形,則的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知某中學(xué)高二物化生組合學(xué)生的數(shù)學(xué)與物理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如下表:若抽取了名學(xué)生,成績(jī)分為A(優(yōu)秀),B(良好),C(及格)三個(gè)等級(jí),設(shè),分別表示數(shù)學(xué)成績(jī)與物理成績(jī),例如:表中物理成績(jī)?yōu)锳等級(jí)的共有(人),數(shù)學(xué)成績(jī)?yōu)锽等級(jí)且物理成績(jī)?yōu)镃等級(jí)的共有8人,已知與均為A等級(jí)的概率是0.07(1)設(shè)在該樣本中,數(shù)學(xué)成績(jī)的優(yōu)秀率是30%,求,的值;(2)已知,,求數(shù)學(xué)成績(jī)?yōu)锳等級(jí)的人數(shù)比C等級(jí)的人數(shù)多的概率18.(12分)已如橢圓C:=1(a>b>0)的有頂點(diǎn)為M(2,0),且離心率e=,點(diǎn)A,B是橢圓C上異于點(diǎn)M的不同的兩點(diǎn)(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線MA與直線MB的斜率分別為k1,k2,若k1?k2=,證明:直線AB一定過定點(diǎn)19.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關(guān)系,并說明理由;(2)若過點(diǎn)的直線l與圓C相切,求直線l的方程.20.(12分)已知雙曲線的左、右焦點(diǎn)分別為,過作斜率為的弦.求:(1)弦的長(zhǎng);(2)△的周長(zhǎng).21.(12分)如圖1是一張長(zhǎng)方形鐵片,,,,分別是,中點(diǎn),,分別在邊,上,且,將它卷成一個(gè)圓柱的側(cè)面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.22.(10分)在中,已知,,,,分別為邊,的中點(diǎn),于點(diǎn).(1)求直線方程;(2)求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出函數(shù)的導(dǎo)數(shù),由給定極值點(diǎn)可得a與b的關(guān)系,再借助“1”的妙用求解即得.【詳解】對(duì)求導(dǎo)得:,因函數(shù)的一個(gè)極值點(diǎn)為2,則,此時(shí),,,因,即,因此,在2左右兩側(cè)鄰近的區(qū)域值一正一負(fù),2是函數(shù)的一個(gè)極值點(diǎn),則有,又,,于是得,當(dāng)且僅當(dāng),即時(shí)取“=”,所以的最小值為.故選:B2、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因?yàn)椤按嬖?,使得”為真命題,所以,因此上述命題得個(gè)充分不必要條件是.故選:B.【點(diǎn)睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.3、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點(diǎn)),解得,即得結(jié)果.【詳解】因?yàn)殡p曲線的離心率,所以,設(shè)為拋物線焦點(diǎn),則,拋物線準(zhǔn)線方程為,因此到雙曲線的上焦點(diǎn)的距離與到直線的距離之和等于,因?yàn)?,所以,即,即雙曲線的方程為,選B.【點(diǎn)睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.4、D【解析】根據(jù)等差數(shù)列的性質(zhì),可知,從而可求出結(jié)果.【詳解】解:根據(jù)題意,可知等差數(shù)列中,,則,所以.故選:D.5、D【解析】由條件知,,依次成公比為的等比數(shù)列,三者之和為50升,根據(jù)等比數(shù)列的前n項(xiàng)和,即故答案為D.6、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導(dǎo)數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當(dāng)時(shí),,當(dāng)時(shí),即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.7、C【解析】由折線圖逐項(xiàng)分析得到答案.【詳解】對(duì)于選項(xiàng)A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項(xiàng)A正確;對(duì)于選項(xiàng)B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%,故選項(xiàng)B正確;對(duì)于選項(xiàng)C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.8、B【解析】利用條件概率公式進(jìn)行求解.【詳解】,其中表示:兩次點(diǎn)數(shù)均為奇數(shù),且兩次點(diǎn)數(shù)之和為8,共有兩種情況,即,故,而,所以,故選:B9、A【解析】直線與曲線相切于點(diǎn),可得求得的導(dǎo)數(shù),可得,即可求得答案.【詳解】直線與曲線相切于點(diǎn)將代入可得:解得:由,解得:.可得,根據(jù)在上,解得:故故選:A.【點(diǎn)睛】本題考查了根據(jù)切點(diǎn)求參數(shù)問題,解題關(guān)鍵是掌握函數(shù)切線的定義和導(dǎo)數(shù)的求法,考查了分析能力和計(jì)算能力,屬于中檔題.10、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對(duì)稱性及定義求解即可.【詳解】由橢圓的對(duì)稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A11、D【解析】若直線傾斜角為,由題設(shè)有,結(jié)合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D12、D【解析】根據(jù)橢圓定義及正三角形的性質(zhì)可得到\,再在中運(yùn)用余弦定理得到、的關(guān)系,進(jìn)而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因?yàn)檎切?,所以,在中,由余弦定理得,則,,故選:D【點(diǎn)睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運(yùn)算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個(gè)相同底面高為1的圓錐,幾何體的體積為:故答案為:14、【解析】利用坐標(biāo)法,利用向量共線及垂直的坐標(biāo)表示可求,即求.【詳解】如圖建立空間直角坐標(biāo)系,則,因?yàn)辄c(diǎn)與三點(diǎn)共線且,,設(shè),即,∴,∴,∴,即,∴點(diǎn)到平面的距離為.故答案為:.15、【解析】,所以抽到穿白色衣服的選手號(hào)碼為,共16、【解析】設(shè)拋物線的方程為得到,把代入橢圓的方程化簡(jiǎn)即得解.【詳解】設(shè)拋物線的方程為.由題得,代入橢圓的方程得,所以,所以,所以因?yàn)?,所?故答案為:【點(diǎn)睛】方法點(diǎn)睛:求橢圓的離心率常用的方法有:(1)公式法(根據(jù)已知求出代入離心率的公式即得解);(2)方程法(直接由已知得到關(guān)于離心率的方程解方程即得解).要根據(jù)已知條件靈活選擇方法求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù)與均為A等級(jí)的概率是0.07,求得值,再根據(jù)數(shù)學(xué)成績(jī)的優(yōu)秀率是30%求得值,最后利用抽取的總?cè)藬?shù)求出值即可;(2)根據(jù),,,寫出滿足條件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小問1詳解】由題意知,解得,,解得,由已知得,解得.【小問2詳解】由,,,可知,則試驗(yàn)的樣本空間,共9個(gè)樣本點(diǎn)其中包含的樣本點(diǎn)有共4個(gè),故所求概率18、(I);(II)證明見解析.【解析】(I)根據(jù)頂點(diǎn)坐標(biāo)求得,根據(jù)離心率求得,由此求得,進(jìn)而求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出根與系數(shù)關(guān)系,根據(jù),求得的關(guān)系式,由此判斷直線過定點(diǎn).【詳解】(I)由于是橢圓的頂點(diǎn),所以,由于,所以,所以,所以橢圓方程為.(II)由于是橢圓上異于點(diǎn)的不同的兩點(diǎn),所以可設(shè)直線的方程為,設(shè),由消去并化簡(jiǎn)得,所以,即.,,,,解得,所以直線的方程為,過定點(diǎn).【點(diǎn)睛】本小題主要考查橢圓方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問題.19、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關(guān)系即可判斷結(jié)果;(2)討論,當(dāng)直線l的斜率不存在時(shí)則方程為,當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,利用圓心到直線的距離等于半徑計(jì)算即可得出結(jié)果.【小問1詳解】把圓M的方程化成標(biāo)準(zhǔn)方程,得,圓心為,半徑.圓C的圓心為,半徑,因?yàn)?,所以圓C與圓M相交,【小問2詳解】①當(dāng)直線l的斜率不存在時(shí),直線l的方程為到圓心C距離為2,滿足題意;②當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.20、(1);(2).【解析】(1)聯(lián)立直線方程與雙曲線方程,求得交點(diǎn)的坐標(biāo),再用兩點(diǎn)之間的距離公式即可求得;(2)根據(jù)(1)中所求,利用兩點(diǎn)之間的距離公式,即可求得三角形周長(zhǎng).【小問1詳解】設(shè)點(diǎn)的坐標(biāo)分別為,由題意知雙曲線的左、右焦點(diǎn)坐標(biāo)分別為、,直線的方程,與聯(lián)立得,解得,代入的方程為分別解得.所以.【小問2詳解】由(1)知,,,所以△的周長(zhǎng)為.21、(1)證明見解析.(2).【解析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)作圓柱的母線,由平面幾何知識(shí)可得四邊形為平行四邊形,利用等體積法可求得,由幾何體的體積,可求得答案.【小問1詳解】證明:∵是直徑,∴,∵平面,平面,∴,∵平面,平面,,∴平面;【小問2詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)定制辦公臺(tái)式機(jī)采購合同
- 承包合同轉(zhuǎn)讓協(xié)議的變更
- 白酒二批經(jīng)銷商合同協(xié)議范本
- 居間及法律服務(wù)合同糾紛
- 街邊店鋪轉(zhuǎn)讓合同模板
- 環(huán)保廢鋼采購協(xié)議
- 項(xiàng)目設(shè)計(jì)招標(biāo)文件模板設(shè)計(jì)心得分享
- 網(wǎng)站故障排查服務(wù)合同
- 電梯設(shè)備運(yùn)營(yíng)服務(wù)合同
- 質(zhì)物借款責(zé)任
- FOCUS-PDCA改善案例-提高術(shù)前手術(shù)部位皮膚準(zhǔn)備合格率醫(yī)院品質(zhì)管理成果匯報(bào)
- 山東省濟(jì)南市2023-2024學(xué)年高一上學(xué)期1月期末考試 地理 含答案
- 龍門吊二手買賣合同(2024版)
- 2025年廣東省高等學(xué)校招生中等職業(yè)學(xué)校畢業(yè)生統(tǒng)一考試 英語押題卷(五)(含答案)
- 2024年高考真題完全解讀課件:2024年高考物理真題完全解讀(遼寧、吉林、黑龍江卷)
- 電大機(jī)考-2270資源與運(yùn)營(yíng)管理(題庫帶答案)
- 國(guó)開(浙江)2024年秋《中國(guó)建筑史(本)》形考作業(yè)1-4答案
- 2024年海南省高考?xì)v史試卷(含答案解析)
- 口腔常見疾病課件
- 大學(xué)生思想道德與法治課件
- 專題07:回憶性散文閱讀(考點(diǎn)串講)
評(píng)論
0/150
提交評(píng)論