版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇常熟市張橋中學(xué)2024屆高二上數(shù)學(xué)期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前n項和為,公差,若(,),則()A.2023 B.2022C.2021 D.20202.已知p、q是兩個命題,若“(¬p)∨q”是假命題,則()A.p、q都是假命題 B.p、q都是真命題C.p是假命題q是真命題 D.p是真命題q是假命題3.函數(shù)的圖像在點處的切線方程為()A. B.C. D.4.已知空間直角坐標系中的點,,,則點P到直線AB的距離為()A. B.C. D.5.已知命題:,命題:則是的()條件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要6.已知,則()A. B.1C. D.7.甲乙兩名運動員在某項體能測試中的6次成績統(tǒng)計如表:甲9816151514乙7813151722分別表示甲乙兩名運動員這項測試成績的平均數(shù),分別表示甲乙兩名運動員這項測試成績的標準差,則有()A., B.,C., D.,8.復(fù)數(shù)的共軛復(fù)數(shù)是A. B.C. D.9.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.2410.某次數(shù)學(xué)考試試卷評閱采用“雙評+仲裁”的方式,規(guī)則如下:兩位老師獨立評分,稱為一評和二評,當(dāng)兩者所評分數(shù)之差的絕對值小于或等于分時,取兩者平均分為該題得分;當(dāng)兩者所評分數(shù)之差的絕對值大于分時,再由第三位老師評分,稱之為仲裁,取仲裁分數(shù)和一、二評中與之接近的分數(shù)的平均分為該題得分.如圖所示,當(dāng),,時,則()A. B.C.或 D.11.已知向量,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.直線,若的傾斜角為60°,則的斜率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點,且垂直于的直線方程為_______________.14.在等比數(shù)列中,若,是方程兩根,則________.15.已知命題p:若,則,那么命題p的否命題為______16.某部門計劃對某路段進行限速,為調(diào)查限速60km/h是否合理,對通過該路段的300輛汽車的車速進行檢測,將所得數(shù)據(jù)按,,,分組,繪制成如圖所示頻率分布直方圖.則________;這300輛汽車中車速低于限速60km/h的汽車有______輛.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為3的正方體中,分別是上的點且(1)求證:;(2)求平面與平面的夾角的余弦值18.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標準方程19.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.20.(12分)已知各項均為正數(shù)的等比數(shù)列前項和為,且,.(1)求數(shù)列的通項公式;(2)若,求21.(12分)中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F(xiàn)2,且|F1F2|=,橢圓的長半軸長與雙曲線半實軸長之差為4,離心率之比為3∶7(1)求這兩曲線方程;(2)若P為這兩曲線的一個交點,求△F1PF2的面積22.(10分)設(shè)等差數(shù)列的前項和為(1)求的通項公式;(2)求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意令可得,結(jié)合等差數(shù)列前n項和公式寫出,進而得到關(guān)于的方程,解方程即可.【詳解】因為,令,得,又,,所以,有,解得.故選:C2、D【解析】由已知可得¬p,q都是假命題,從而可分析判斷各選項【詳解】∵“(¬p)∨q”是假命題,∴¬p,q都是假命題,∴p真,q假,故選:D.3、B【解析】求得函數(shù)的導(dǎo)數(shù),計算出和的值,可得出所求切線的點斜式方程,化簡即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點睛】本題考查利用導(dǎo)數(shù)求解函圖象的切線方程,考查計算能力,屬于基礎(chǔ)題4、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點到直線的距離為.故選:D5、B【解析】利用充分條件和必要條件的定義判斷.【詳解】解:若,則或,即或,所以是的必要不充分條件故選:B6、B【解析】先根據(jù)共軛復(fù)數(shù)的定義可得,再根據(jù)復(fù)數(shù)的運算法則即可求出【詳解】因為,所以故選:B7、B【解析】根據(jù)給定統(tǒng)計表計算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B8、B【解析】因,故其共軛復(fù)數(shù).應(yīng)選B.考點:復(fù)數(shù)的概念及運算.9、B【解析】根據(jù)等差數(shù)列通項公式相關(guān)計算求出公差,進而求出首項.【詳解】設(shè)公差為,由題意得:,解得:,所以.故選:B10、B【解析】按照框圖考慮成立和不成立即可求解.【詳解】因為,,,所以輸入,當(dāng)成立時,,即,解得,,滿足條件;當(dāng)不成立時,,即,解得,,不滿足條件;故.故選:B.11、A【解析】根據(jù)平面向量垂直的性質(zhì),結(jié)合平面向量數(shù)量積的坐標表示公式、充分性、必要性的定義進行求解判斷即可.詳解】當(dāng)時,有,顯然由,但是由不一定能推出,故選:A12、D【解析】直線,斜率乘積為,斜線斜率等于傾斜角的正切值.【詳解】,,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出,可得垂直于的直線的斜率為,再利用點斜式可得結(jié)果.【詳解】因為,所以,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點睛】對直線位置關(guān)系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1);(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.14、.【解析】由題意求得,,再結(jié)合等比數(shù)列的性質(zhì),即可求解.【詳解】由題意知,,是方程的兩根,可得,,又由,,所以,,可得,又由,所以.故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、若,則【解析】直接利用否命題的定義,對原命題的條件與結(jié)論都否定即可得結(jié)果【詳解】因為命題:若,則,所以否定條件與結(jié)論后,可得命題的否命題為若,則,故答案為若,則,【點睛】本題主要考查命題的否命題,意在考查對基礎(chǔ)知識的掌握與應(yīng)用,屬于基礎(chǔ)題16、①.②.【解析】根據(jù)個小矩形面積之和為1即可求出的值;根據(jù)頻率分布直方圖可以求出車速低于限速60km/h的頻率,從而可求出汽車有多少輛【詳解】由解得:這300輛汽車中車速低于限速60km/h的汽車有故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標系后得到相關(guān)向量,再運用數(shù)量積證明;(2)求出相關(guān)平面的法向量,再運用夾角公式計算即可.【小問1詳解】建立如下圖所示的空間直角坐標系:,,,,,∴,故.【小問2詳解】,,,設(shè)平面的一個法向量為,由,令,則,取平面的一個法向量為,設(shè)平面與平面夾角為,易知:為銳角,故,即平面與平面夾角的余弦值為.18、(1)(2)【解析】(1)先求得直線和直線的交點坐標,再用點斜式求得直線的方程.(2)設(shè)圓的標準方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標準方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標準方程為,則,所以圓的標準方程為.19、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識,考查空間想象能力、分析問題的能力、計算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點M(M∈平面PAB),點M即為所求的一個點.理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點N,使得AP=PN,則所找的點可以是直線MN上任意一點)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過點A作AH⊥CE,交CE的延長線于點H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點,以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點:線線平行、線面平行、向量法.20、(1)(2)9【解析】(1)根據(jù)題意列出關(guān)于等比數(shù)列首項、公比的方程組即可解決;(2)利用等比數(shù)列的前項和的公式,解方程即可解決.【小問1詳解】設(shè)各項均為正數(shù)的等比數(shù)列首項為,公比為則有,解之得則等比數(shù)列的通項公式.【小問2詳解】由,可得21、(1)橢圓方程為雙曲線方程為;(2)12【解析】(1)根據(jù)半焦距,設(shè)橢圓長半軸為a,由離心率之比求出a,進而求出橢圓短半軸的長及雙曲線的虛半軸的長,寫出橢圓和雙曲線的標準方程;(2)由橢圓、雙曲線的定義求出與的長,在三角形中,利用余弦定理求出cos∠的值,進一步求得sin∠的值,代入面積公式得答案試題解析:(1)設(shè)橢圓方程為,雙曲線方程為(a,b,m,n>0,且a>b),則解得:a=7,m=3,∴b=6,n=2,∴橢圓方程為雙曲線方程為(2)不妨設(shè)F1,F(xiàn)2分別為左、右焦點,P是第一象限的一個交點,則PF1+PF2=14
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年云南建筑安全員A證考試題庫附答案
- 貴州大學(xué)《集成電路原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽幼兒師范高等專科學(xué)校《成礦規(guī)律與成礦預(yù)測》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025廣東建筑安全員知識題庫
- 2025青海省建筑安全員《C證》考試題庫
- 硅湖職業(yè)技術(shù)學(xué)院《化工原理B》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年江蘇省安全員A證考試題庫
- 2025湖北省建筑安全員A證考試題庫附答案
- 廣州新華學(xué)院《體育活動組織與策劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《數(shù)學(xué)課程與教材研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 數(shù)學(xué)-2025年高考綜合改革適應(yīng)性演練(八省聯(lián)考)
- 市場營銷試題(含參考答案)
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓(xùn)課件
- 景區(qū)旅游安全風(fēng)險評估報告
- 2023年新高考(新課標)全國2卷數(shù)學(xué)試題真題(含答案解析)
- 2024年計算機二級WPS考試題庫380題(含答案)
- 事業(yè)單位工作人員獎勵審批表
- DL-T 1476-2023 電力安全工器具預(yù)防性試驗規(guī)程
- 眼科護理的國內(nèi)外發(fā)展動態(tài)和趨勢
- 2024年中煤平朔集團有限公司招聘筆試參考題庫含答案解析
- 水中五日生化需氧量測定的影響因素
評論
0/150
提交評論