江蘇省徐州市銅山區(qū) 2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
江蘇省徐州市銅山區(qū) 2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
江蘇省徐州市銅山區(qū) 2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
江蘇省徐州市銅山區(qū) 2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
江蘇省徐州市銅山區(qū) 2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省徐州市銅山區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在試驗(yàn)“甲射擊三次,觀察中靶的情況”中,事件A表示隨機(jī)事件“至少中靶1次”,事件B表示隨機(jī)事件“正好中靶2次”,事件C表示隨機(jī)事件“至多中靶2次”,事件D表示隨機(jī)事件“全部脫靶”,則()A.A與C是互斥事件 B.B與C是互斥事件C.A與D是對(duì)立事件 D.B與D是對(duì)立事件2.已知在空間直角坐標(biāo)系(O為坐標(biāo)原點(diǎn))中,點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)B,則z軸與平面OAB所成的線面角為()A. B.C. D.3.音樂與數(shù)學(xué)有著密切的聯(lián)系,我國(guó)春秋時(shí)期有個(gè)著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼?,得到“微”,“微”?jīng)過一次“益”,頻率變?yōu)樵瓉淼模玫健吧獭薄来艘?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個(gè)音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列4.已知雙曲線的一條漸近線方程是,它的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,則雙曲線的方程為()A. B.C. D.5.由小到大排列的一組數(shù)據(jù):,其中每個(gè)數(shù)據(jù)都小于,另一組數(shù)據(jù)2、的中位數(shù)可以表示為()A. B.C. D.6.已知等比數(shù)列的前項(xiàng)和為,則關(guān)于的方程的解的個(gè)數(shù)為()A.0 B.1C.無數(shù)個(gè) D.0或無數(shù)個(gè)7.埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個(gè)正四棱錐,以該四棱錐的高為邊長(zhǎng)的正方形面積等于該四棱錐一個(gè)側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長(zhǎng)的比值為()A. B.C. D.8.已知是和的等比中項(xiàng),則圓錐曲線的離心率為()A. B.或2C. D.或9.已知函數(shù)(是的導(dǎo)函數(shù)),則()A.21 B.20C.16 D.1110.已知,命題“若,則,全為0”的否命題是()A.若,則,全不為0. B.若,不全為0,則.C.若,則,不全為0. D.若,則,全不為0.11.曲線與曲線的()A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等C.離心率相等 D.焦距相等12.過拋物線的焦點(diǎn)作直線l,交拋物線與A、B兩點(diǎn),若線段中點(diǎn)的縱坐標(biāo)為3,則等于()A.10 B.8C.6 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,則以下結(jié)論正確的是______.①曲線C關(guān)于點(diǎn)對(duì)稱;②曲線C關(guān)于y軸對(duì)稱;③曲線C被x軸所截得的弦長(zhǎng)為2;④曲線C上的點(diǎn)到原點(diǎn)距離都不超過2.14.棱長(zhǎng)為的正方體的頂點(diǎn)到截面的距離等于__________.15.寫出一個(gè)同時(shí)滿足下列條件①②③的圓C的標(biāo)準(zhǔn)方程:__________①圓C的圓心在第一象限;②圓C與x軸相切;③圓C與圓外切16.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來研究數(shù).用一點(diǎn)(或一個(gè)小石子)代表1,兩點(diǎn)(或兩個(gè)小石子)代表2,三點(diǎn)(或三個(gè)小石子)代表3,…他們研究了各種平面數(shù)(包括三角形數(shù)、正方形數(shù)、長(zhǎng)方形數(shù)、五邊形數(shù)、六邊形數(shù)等等)和立體數(shù)(包括立方數(shù)、棱錐數(shù)等等).如前四個(gè)四棱錐數(shù)為第n個(gè)四棱錐數(shù)為1+4+9+…+n2=.中國(guó)古代也有類似的研究,如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法?商功》中,后人稱為“三角垛”.“三角垛”的最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…若一個(gè)“三角垛”共有20層,則第6層有____個(gè)球,這個(gè)“三角垛”共有______個(gè)球三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線方程為(1)求拋物線C的標(biāo)準(zhǔn)方程;(2)若AB是過拋物線C的焦點(diǎn)F的弦,以弦AB為直徑的圓與直線的位置關(guān)系是什么?先給出你的判斷結(jié)論,再給出你的證明,并作出必要的圖形18.(12分)如圖①,等腰梯形中,,分別為的中點(diǎn),,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.19.(12分)已知函數(shù)(1)若在上不單調(diào),求a的范圍;(2)試討論函數(shù)的零點(diǎn)個(gè)數(shù)20.(12分)如圖,在直三棱柱中,,,D為的中點(diǎn)(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點(diǎn),求與所成的角21.(12分)已知的內(nèi)角的對(duì)邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長(zhǎng)的最大值.22.(10分)已知拋物線C的焦點(diǎn)為,N為拋物線上一點(diǎn),且(1)求拋物線C的方程;(2)過點(diǎn)F且斜率為k的直線l與C交于A,B兩點(diǎn),,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)互斥事件、對(duì)立事件的定義即可求解.【詳解】解:因?yàn)锳與C,B與C可能同時(shí)發(fā)生,故選項(xiàng)A、B不正確;B與D不可能同時(shí)發(fā)生,但B與D不是事件的所有結(jié)果,故選項(xiàng)D不正確;A與D不可能同時(shí)發(fā)生,且A與D為事件的所有結(jié)果,故選項(xiàng)C正確故選:C.2、B【解析】根據(jù)點(diǎn)關(guān)于坐標(biāo)軸對(duì)稱的性質(zhì),結(jié)合空間向量夾角公式進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為,所以,設(shè)平面OAB的一個(gè)法向量為,則得所以,令,得,所以又z軸的一個(gè)方向向量為,設(shè)z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B3、C【解析】根據(jù)文化知識(shí),分別求出相對(duì)應(yīng)的頻率,即可判斷出結(jié)果【詳解】設(shè)“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點(diǎn)睛】本題考查等比數(shù)列的定義,考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題4、A【解析】根據(jù)雙曲線漸近線方程得a和b的關(guān)系,根據(jù)焦點(diǎn)在拋物線準(zhǔn)線上得c的值,結(jié)合a、b、c關(guān)系即可求解.【詳解】∵雙曲線的一條漸近線方程是,∴,∵準(zhǔn)線方程是,∴,∵,∴,,∴雙曲線標(biāo)準(zhǔn)方程為:.故選:A.5、C【解析】先根據(jù)題意對(duì)數(shù)據(jù)進(jìn)行排列,然后由中位數(shù)的定義求解即可【詳解】因?yàn)橛尚〉酱笈帕械囊唤M數(shù)據(jù):,其中每個(gè)數(shù)據(jù)都小于,所以另一組數(shù)據(jù)2、從小到大的排列為,所以這一組數(shù)的中位數(shù)為,故選:C6、D【解析】利用等比數(shù)列的求和公式討論公比的取值即得.【詳解】設(shè)等比數(shù)列的公比為,當(dāng)時(shí),,因?yàn)椋詿o解,即方程的解的個(gè)數(shù)為0,當(dāng)時(shí),,所以時(shí),方程有無數(shù)個(gè)偶數(shù)解,當(dāng)時(shí),方程無解,綜上,關(guān)于的方程的解的個(gè)數(shù)為0或無數(shù)個(gè).故選:D.7、C【解析】設(shè),利用得到關(guān)于的方程,解方程即可得到答案.【詳解】如圖,設(shè),則,由題意,即,化簡(jiǎn)得,解得(負(fù)值舍去).故選:C【點(diǎn)晴】本題主要考查正四棱錐的概念及其有關(guān)計(jì)算,考查學(xué)生的數(shù)學(xué)計(jì)算能力,是一道容易題.8、B【解析】由等比中項(xiàng)的性質(zhì)可得,分別計(jì)算曲線的離心率.【詳解】由是和的等比中項(xiàng),可得,當(dāng)時(shí),曲線方程為,該曲線為焦點(diǎn)在軸上的橢圓,離心率,當(dāng)時(shí),曲線方程為,該曲線為焦點(diǎn)在軸上的雙曲線,離心率,故選:B.9、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B10、C【解析】根據(jù)四種命題的關(guān)系求解.【詳解】因?yàn)榉衩}是否定原命題的條件和結(jié)論,所以命題“若,則,全為0”的否命題是:若,則,不全為0,故選:C11、D【解析】分別求出兩曲線表示的橢圓的位置,長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率和焦距,比較可得答案.【詳解】曲線表示焦點(diǎn)在x軸上的橢圓,長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為6,離心率為,焦距為8,曲線焦點(diǎn)在x軸上的橢圓,長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,離心率為,焦距為,故選:D12、B【解析】根據(jù)拋物線的定義求解【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,設(shè),則,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、②④【解析】將x換成,將y換成,若方程不變則關(guān)于原點(diǎn)對(duì)稱;將x換成,曲線的方程不變則關(guān)于y軸對(duì)稱;令通過解方程即可求得被x軸所截得的弦長(zhǎng);利用基本不等式即可判斷出曲線C上y軸右側(cè)的點(diǎn)到原點(diǎn)距離是否不超過2,根據(jù)曲線C關(guān)于y軸對(duì)稱,即可判斷出曲線C上的點(diǎn)到原點(diǎn)距離是否都不超過2.【詳解】對(duì)于①,將x換成,將y換成,方程改變,則曲線C關(guān)于點(diǎn)不對(duì)稱,故①錯(cuò)誤;對(duì)于②,將x換成,曲線的方程不變,則曲線C關(guān)于y軸對(duì)稱,故②正確;對(duì)于③,令得,,解得,即曲線C與x軸的交點(diǎn)為和,則曲線C被x軸所截得的弦長(zhǎng)為,故③錯(cuò)誤;對(duì)于④,當(dāng)時(shí),,可得,當(dāng)且僅當(dāng)時(shí)取等號(hào),即,則,即曲線C上y軸右側(cè)的點(diǎn)到原點(diǎn)的距離都不超過2,此曲線關(guān)于y軸對(duì)稱,即曲線C上y軸左側(cè)的點(diǎn)到原點(diǎn)的距離也不超過2,故④正確;故答案為:②④.14、【解析】根據(jù)勾股定理可以計(jì)算出,這樣得到是直角三角形,利用等體積法求出點(diǎn)到的距離.【詳解】解:如圖所示,在三棱錐中,是三棱錐的高,,在中,,,,所以是直角三角形,,設(shè)點(diǎn)到的距離為,.故A到平面的距離為故答案為:【點(diǎn)睛】本題考查了點(diǎn)到線的距離,利用等體積法求出點(diǎn)到面的距離.是解題的關(guān)鍵.15、(答案不唯一,但圓心坐標(biāo)需滿足,)【解析】首先設(shè)圓的圓心和半徑,根據(jù)條件得到關(guān)于的方程組,即可求解.【詳解】設(shè)圓心坐標(biāo)為,由①可知,半徑為,由②③可知,整理可得,當(dāng)時(shí),,,所以其中一個(gè)同時(shí)滿足條件①②③的圓的標(biāo)準(zhǔn)方程是.故答案為:(答案不唯一,但圓心坐標(biāo)需滿足,)16、①.21②.1540【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到=,由此可求的值,以及前20層的總球數(shù)【詳解】由題意可知,,故==,所==21,所以S20=a1+a2+a3+a4+??+a20=(12+22+32+??+202)+(1+2+3+??+20)=×+×=1540故答案為:21;1540三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)相切,證明過程、圖形見解析.【解析】(1)根據(jù)拋物線的準(zhǔn)線方程,結(jié)合拋物線標(biāo)準(zhǔn)方程進(jìn)行求解即可;(2)設(shè)出直線AB的方程與拋物線方程聯(lián)立,利用一元二次方程根與系數(shù)關(guān)系,結(jié)合圓的性質(zhì)進(jìn)行求解即可.【小問1詳解】因?yàn)閽佄锞€C的頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線方程為,所以設(shè)拋物線C的標(biāo)準(zhǔn)方程為:,因?yàn)樵搾佄锞€的準(zhǔn)線方程為,所以有,所以拋物線C的標(biāo)準(zhǔn)方程;小問2詳解】以弦AB為直徑的圓與直線相切,理由如下:因?yàn)锳B是過拋物線C的焦點(diǎn)F的弦,所以直線AB的斜率不為零,設(shè)橢圓的焦點(diǎn)坐標(biāo)為,設(shè)直線AB的方程為:,則有,設(shè),則有,因此,所以弦AB為直徑的圓的圓心的橫坐標(biāo)為:,以弦AB為直徑的圓的直徑為:所以弦AB為直徑的圓的半徑,以弦AB為直徑的圓的圓心到準(zhǔn)線的距離為:,所以以弦AB為直徑的圓與直線相切.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程的根與系數(shù)關(guān)系是解題的關(guān)鍵.18、(1)證明見解析.(2)2【解析】(1)根據(jù)面面平行的判定定理結(jié)合已知條件即可證明;(2)將所求四棱錐的體積轉(zhuǎn)化為求即可.【小問1詳解】證明:因?yàn)椋?,面,所以面,同理面,又因?yàn)槊?所以面面.【小問2詳解】解:因?yàn)樵趫D①等腰梯形中,分別為的中點(diǎn),所以,在圖②多面體中,因?yàn)?,面,,所以?因?yàn)?,面面,面,面?所以面,又因?yàn)槊?,所以,在直角三角形中,因?yàn)?所以,同理,,所以,則,有,所以.所以四棱錐的體積為2.19、(1)(2)答案見解析【解析】(1)由:存在使來求得的取值范圍.(2)利用分離常數(shù)法,結(jié)合導(dǎo)數(shù)來求得零點(diǎn)個(gè)數(shù).【小問1詳解】,在上遞增,由于在上不單調(diào),所以存使,,所以.【小問2詳解】,令,當(dāng)時(shí),,構(gòu)造函數(shù),,所以在遞減;在遞增,當(dāng)時(shí),;當(dāng)時(shí),;.由此畫出大致圖象如下圖所示,所以,當(dāng)時(shí),有個(gè)零點(diǎn),當(dāng)時(shí),沒有零點(diǎn),當(dāng)時(shí),有個(gè)零點(diǎn).20、(1)證明見解析(2)(3)【解析】(1)連接,交于O,連接OD,根據(jù)中位線的性質(zhì),可證,根據(jù)線面平行的判定定理,即可得證;(2)如圖建系,求得各點(diǎn)坐標(biāo),進(jìn)而可求得平面與平面法向量,根據(jù)二面角的向量求法,即可得答案;(3)求得坐標(biāo),根據(jù)線線角的向量求法,即可得答案.【小問1詳解】連接,交于O,連接OD,則O為的中點(diǎn),在中,因?yàn)镺、D分別為、BC中點(diǎn),所以,又因?yàn)槠矫?,平面,所以平面【小?詳解】由題意得,兩兩垂直,以B為原點(diǎn),為x,y,z軸正方向建系,如圖所示:設(shè),則,所以,則,,因?yàn)槠矫嬖谄矫鍭BC內(nèi),且平面ABC,所以即為平面的一個(gè)法向量,設(shè)平面的一個(gè)法向量為,則,所以,令,則,所以法向量,所以,由圖象可得平面與平面的夾角為銳角,所以平面與平面的夾角的余弦值為【小問3詳解】由(2)可得,設(shè)與所成的角為,則,解得,所以與所成的角為21、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結(jié)合基本不等式可得的最大值為4,從而可求出三角形周長(zhǎng)的最大值【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論