版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省沈陽市重點中學(xué)2023年高二上數(shù)學(xué)期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若,則()A. B.0C.1 D.22.已知數(shù)列中,,(),則等于()A. B.C. D.23.已知數(shù)列的前n項和為,,,則()A. B.C. D.4.若復(fù)數(shù)z滿足(其中為虛數(shù)單位),則()A. B.C. D.5.某學(xué)校的校車在早上6:30,6:45,7:00到達(dá)某站點,小明在早上6:40至7:10之間到達(dá)站點,且到達(dá)的時刻是隨機的,則他等車時間不超過5分鐘的概率是()A. B.C. D.6.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.7.如圖,在長方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.8.從0,1,2,3,4,5這六個數(shù)字中,任取兩個不同數(shù)字構(gòu)成平面直角坐標(biāo)系內(nèi)點的橫、縱坐標(biāo),其中不在軸上的點有()A.36個 B.30個C.25個 D.20個9.已知四棱錐,平面PAB,平面PAB,底面ABCD是梯形,,,,滿足上述條件的四棱錐的頂點P的軌跡是()A.橢圓 B.橢圓的一部分C.圓 D.不完整的圓10.已知是拋物線的焦點,是拋物線的準(zhǔn)線,點,連接交拋物線于點,,則的面積為()A.4 B.9C. D.11.設(shè),分別為具有公共焦點與橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為A. B.1C.2 D.不確定12.若數(shù)列滿足,,則該數(shù)列的前2021項的乘積是()A. B.C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知正數(shù),滿足.若恒成立,則實數(shù)的取值范圍是______.14.函數(shù)極值點的個數(shù)是______15.在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)△ABC的面積為S,其中,,則S的最大值為______16.設(shè)是數(shù)列的前項和,且,則_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖像在處的切線斜率為,且時,有極值.(1)求的解析式;(2)求在上的最大值和最小值.18.(12分)已知雙曲線,拋物線的焦點與雙曲線的一個焦點相同,點為拋物線上一點.(1)求雙曲線的焦點坐標(biāo);(2)若點到拋物線的焦點的距離是5,求的值.19.(12分)已知函數(shù),.(1)若在單調(diào)遞增,求的取值范圍;(2)若,求證:.20.(12分)已知數(shù)列,,其中,是各項均為正數(shù)的等比數(shù)列,滿足,,且(1)求數(shù)列,的通項公式;(2)設(shè),求數(shù)列的前n項和21.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間;(2)當(dāng)時,證明:存在最大值,且恒成立.22.(10分)已知函數(shù),從下列兩個條件中選擇一個使得數(shù)列{an}成等比數(shù)列.條件1:數(shù)列{f(an)}是首項為4,公比為2的等比數(shù)列;條件2:數(shù)列{f(an)}是首項為4,公差為2的等差數(shù)列.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出函數(shù)的導(dǎo)數(shù),直接代入即可求值.【詳解】因為,所以,所以,所以.故選:D.2、D【解析】由已知條件可得,,…,即是周期為3的數(shù)列,即可求.【詳解】由題設(shè),知:,,,…,∴是周期為3的數(shù)列,而的余數(shù)為1,∴.故選:D.3、D【解析】根據(jù)給定遞推公式求出即可計算作答.【詳解】因數(shù)列的前n項和為,,,則,,,所以.故選:D4、B【解析】利用復(fù)數(shù)的除法化簡復(fù)數(shù),利用復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,因此,.故選:B5、B【解析】求出小明等車時間不超過5分鐘能乘上車的時長,即可計算出概率.【詳解】6:40至7:10共30分鐘,小明同學(xué)等車時間不超過5分鐘能乘上車只能是6:40至6:45和6:55至7:00到站,共10分鐘,所以所求概率為.故選:B6、A【解析】由題意可知,對任意的恒成立,可得出對任意的恒成立,利用基本不等式可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,所以,對任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,所以,.故選:A.7、D【解析】根據(jù)長方體中,異面直線和所成角即為直線和所成角,再結(jié)合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.8、C【解析】根據(jù)點不在y軸上,分2類根據(jù)分類加法計數(shù)原理求解.【詳解】因為點不在軸上,所以點的橫坐標(biāo)不能為0,分兩類考慮,第一類含0且為點的縱坐標(biāo),共有個點,第二類坐標(biāo)不含0的點,共有個點,根據(jù)分類加法計數(shù)原理可得共有個點.故選:C9、D【解析】根據(jù)題意,分析得動點滿足的條件,結(jié)合圓以及橢圓的方程,以及點的限制條件,即可判斷軌跡.【詳解】因為平面PAB,平面PAB,則//,又面面,故可得;因為,故可得,則,綜上所述:動點在垂直的平面中,且滿足;為方便研究,不妨建立平面直角坐標(biāo)系進行說明,在平面中,因為,以中點為坐標(biāo)原點,以為軸,過且垂直于的直線為軸建立平面直角坐標(biāo)系,如下所示:因為,故可得,整理得:,故動點的軌跡是一個圓;又當(dāng)三點共線時,幾何體不是空間幾何體,故動點的軌跡是一個不完整的圓.故選:.【點睛】本題考察立體幾何中動點的軌跡問題,處理的關(guān)鍵是利用立體幾何知識,找到動點滿足的條件,進而求解軌跡.10、D【解析】根據(jù)題意求得拋物線的方程為和焦點為,由,得到為的中點,得到,代入拋物線方程,求得,進而求得的面積.【詳解】由直線是拋物線的準(zhǔn)線,可得,即,所以拋物線的方程為,其焦點為,因為,可得可得三點共線,且為的中點,又因為,,所以,將點代入拋物線,可得,所以的面積為.故選:D.11、C【解析】根據(jù)題意,設(shè)它們共同的焦距為2c、橢圓的長軸長2a、雙曲線的實軸長為2m,由橢圓和雙曲線的定義及勾弦定理建立關(guān)于a、c、m的方程,聯(lián)解可得a2+m2=2c2,再根據(jù)離心率的定義求解【詳解】由題意設(shè)焦距為2c,橢圓的長軸長2a,雙曲線的實軸長為2m,設(shè)P在雙曲線的右支上,由雙曲線的定義得|PF1|﹣|PF2|=2m①由橢圓的定義|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④將④代入③,化簡得a2+m2=2c2,即,可得,所以=.故選:C12、C【解析】先由數(shù)列滿足,,計算出前5項,可得,且,再利用周期性即可得到答案.【詳解】因為數(shù)列滿足,,所以,同理可得,…所以數(shù)列每四項重復(fù)出現(xiàn),即,且,而,所以該數(shù)列的前2021項的乘積是.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本不等式性質(zhì)可得的最小值,由恒成立可得即可求出實數(shù)的取值范圍.【詳解】解:因為正數(shù),滿足,所以,當(dāng)且僅當(dāng)時,即時取等號因為恒成立,所以,解得.故實數(shù)的取值范圍是.故答案填:.【點睛】熟練掌握基本不等式的性質(zhì)和正確轉(zhuǎn)化恒成立問題是解題的關(guān)鍵.14、0【解析】通過導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.15、【解析】應(yīng)用余弦定理有,再由三角形內(nèi)角性質(zhì)及同角三角函數(shù)平方關(guān)系求,根據(jù)基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當(dāng)且僅當(dāng)時等號成立,又,當(dāng)且僅當(dāng)時等號成立.故答案為:16、【解析】根據(jù)題意可知,再利用裂項相消法,即可求出結(jié)果.【詳解】因為,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為,最小值為.【解析】(1)由題得①,②,解方程組即得解;(2)令解得或,再列表得解.【小問1詳解】解:求導(dǎo)得,因為在出的切線斜率為,則,即①因為時,有極值,則.即②由①②聯(lián)立得,所以.【小問2詳解】解:由(1),令解得或,列表如下:極大值極小值所以,在[-3,2]上的最大值為,最小值為.18、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點坐標(biāo);(2)先求出的值,再解方程得解.【詳解】(1)因為雙曲線的方程為,所以.所以.所以.所以雙曲線的焦點坐標(biāo)分別為.(2)因為拋物線的焦點與雙曲線的一個焦點相同,所以拋物線的焦點坐標(biāo)是(2,0),所以.因為點為拋物線上一點,所以點到拋物線的焦點的距離等于點到拋物線的準(zhǔn)線的距離.因為點到拋物線的焦點的距離是5,即,所以.【點睛】本題主要考查雙曲線的焦點坐標(biāo)的求法,考查拋物線的定義和幾何性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.19、(1);(2)證明見解析.【解析】(1)由函數(shù)在上單調(diào)遞增,則在上恒成立,由求解.(2)由(1)的結(jié)論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因為函數(shù)在上單調(diào)遞增,所以在上恒成立,則有在上恒成立,即.令函數(shù),,所以時,,在上單調(diào)遞增,所以,所以有,即,因此.(2)由(1)可知當(dāng)時,為增函數(shù),不妨取,則有在上單調(diào)遞增,所以,即有在上恒成立,令,則有,所以,所以,因此.【點睛】方法點睛:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的關(guān)鍵在于準(zhǔn)確判定導(dǎo)數(shù)的符號,當(dāng)f(x)含參數(shù)時,需依據(jù)參數(shù)取值對不等式解集的影響進行分類討論.(2)若可導(dǎo)函數(shù)f(x)在指定的區(qū)間D上單調(diào)遞增(減),求參數(shù)范圍問題,可轉(zhuǎn)化為f′(x)≥0(或f′(x)≤0)恒成立問題,從而構(gòu)建不等式,要注意“=”是否可以取到20、(1),(2)【解析】(1)利用公式法,基本量代換求出數(shù)列,的通項公式;(2)利用錯位相減法求和.【小問1詳解】設(shè)等比數(shù)列的公比為q,因為,所以,所以.所以,所以,所以.所以,所以,【小問2詳解】,所以,,所以.所以21、(1)的單增區(qū)間為,;單減區(qū)間為,,;(2)證明見解析.【解析】(1)先求出函數(shù)的定義域,求出,由,結(jié)合函數(shù)的定義域可得出函數(shù)的單調(diào)區(qū)間.(2)當(dāng)時,定義域R,求出,從而得出單調(diào)區(qū)間,由當(dāng)時,,當(dāng)時,,以及極值點與2的大小關(guān)系可得出當(dāng)時,函數(shù)有最大值,然后再證明即可.【詳解】解:(1)定義域,可得且且,,可得且3無0無0減無減增無增減所以,的單增區(qū)間為,;單減區(qū)間為,,.(2)當(dāng)時,定義域R因為,當(dāng)時,,當(dāng)時,,所以的最大值在時取得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年私人房產(chǎn)買賣合同環(huán)保要求與執(zhí)行標(biāo)準(zhǔn)3篇
- 2025年度路演展示廳清潔維護服務(wù)租賃合同4篇
- 二零二五版水利工程開工合同范例2篇
- 2025年度多功能培訓(xùn)學(xué)校教室租賃合同范本3篇
- 2025年度廚師行業(yè)人才引進與培養(yǎng)服務(wù)協(xié)議3篇
- 2025年度文化藝術(shù)品樣品展覽與上樣合作協(xié)議3篇
- 2024綜藝節(jié)目拍攝基地租賃合同
- 2025年物業(yè)保潔外包服務(wù)合同(含節(jié)能環(huán)保服務(wù))3篇
- 2025年度智能電網(wǎng)建設(shè)采購戰(zhàn)略合作協(xié)議合同范本3篇
- 2025年消防給排水系統(tǒng)節(jié)能改造與優(yōu)化合同3篇
- 人教版小學(xué)數(shù)學(xué)(2024)一年級下冊第一單元 認(rèn)識平面圖形綜合素養(yǎng)測評 B卷(含答案)
- 企業(yè)年會攝影服務(wù)合同
- 電商運營管理制度
- 二零二五年度一手房購房協(xié)議書(共有產(chǎn)權(quán)房購房協(xié)議)3篇
- 2025年上半年上半年重慶三峽融資擔(dān)保集團股份限公司招聘6人易考易錯模擬試題(共500題)試卷后附參考答案
- 城市公共交通運營協(xié)議
- 內(nèi)燃副司機晉升司機理論知識考試題及答案
- 2024北京東城初二(上)期末語文試卷及答案
- 2024設(shè)計院與職工勞動合同書樣本
- 2024年貴州公務(wù)員考試申論試題(B卷)
- 電工高級工練習(xí)題庫(附參考答案)
評論
0/150
提交評論