![遼寧省四校2023-2024學年高二上數(shù)學期末考試模擬試題含解析_第1頁](http://file4.renrendoc.com/view/ea32be29f343147781e9e80cbdf1885e/ea32be29f343147781e9e80cbdf1885e1.gif)
![遼寧省四校2023-2024學年高二上數(shù)學期末考試模擬試題含解析_第2頁](http://file4.renrendoc.com/view/ea32be29f343147781e9e80cbdf1885e/ea32be29f343147781e9e80cbdf1885e2.gif)
![遼寧省四校2023-2024學年高二上數(shù)學期末考試模擬試題含解析_第3頁](http://file4.renrendoc.com/view/ea32be29f343147781e9e80cbdf1885e/ea32be29f343147781e9e80cbdf1885e3.gif)
![遼寧省四校2023-2024學年高二上數(shù)學期末考試模擬試題含解析_第4頁](http://file4.renrendoc.com/view/ea32be29f343147781e9e80cbdf1885e/ea32be29f343147781e9e80cbdf1885e4.gif)
![遼寧省四校2023-2024學年高二上數(shù)學期末考試模擬試題含解析_第5頁](http://file4.renrendoc.com/view/ea32be29f343147781e9e80cbdf1885e/ea32be29f343147781e9e80cbdf1885e5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省四校2023-2024學年高二上數(shù)學期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“五一”期間,甲、乙、丙三個大學生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實是甲、乙、丙三人陳述都只對了一半(關于去向的地點僅對一個).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南2.直線的方向向量為()A. B.C. D.3.雙曲線的漸近線方程為A. B.C. D.4.已知命題:△中,若,則;命題:函數(shù),,則的最大值為.則下列命題是真命題的是()A. B.C. D.5.已知橢圓的焦點分別為,,橢圓上一點P與焦點的距離等于6,則的面積為()A.24 B.36C.48 D.606.某次生物實驗6個小組的耗材質量(單位:千克)分別為1.71,1.58,1.63,1.43,1.85,1.67,則這組數(shù)據(jù)的中位數(shù)是()A.1.63 B.1.67C.1.64 D.1.657.過點且平行于直線的直線方程為()A. B.C. D.8.《九章算術》與《幾何原本》并稱現(xiàn)代數(shù)學的兩大源泉.在《九章算術》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.9.設拋物線的焦點為F,過點F且垂直于x軸的直線與拋物線C交于A,B兩點,若,則()A1 B.2C.4 D.810.直線的傾斜角為()A.30° B.60°C.90° D.120°11.命題“,”的否定是()A., B.,C., D.,12.已知雙曲線的右焦點為,漸近線為,,過的直線與垂直,且交于點,交于點,若,則雙曲線的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側面積大小為____________.(結果保留)14.若直線是曲線的切線,也是曲線的切線,則__________15.已知,是雙曲線的兩個焦點,以線段為邊作正,若邊的中點在雙曲線上,則雙曲線的離心率____________.16.若圓心坐標為圓被直線截得的弦長為,則圓的半徑為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.18.(12分)已知直線與圓.(1)當直線l恰好平分圓C的周長時,求m的值;(2)當直線l被圓C截得的弦長為時,求m的值.19.(12分)已知數(shù)列為各項均為正數(shù)的等比數(shù)列,若(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和20.(12分)已知圓C過兩點,,且圓心C在直線上(1)求圓C的方程;(2)過點作圓C的切線,求切線方程21.(12分)已知數(shù)列是等差數(shù)列,(1)求的通項公式;(2)求的最大項22.(10分)已知直線,,,其中與的交點為P(1)求過點P且與平行的直線方程;(2)求以點P為圓心,截所得弦長為8的圓的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,先假設甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對了一半,假設甲去了北京正確,對于甲的陳述:則乙去西安錯誤,則乙去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南錯誤,乙去了北京也錯誤,故假設錯誤.假設乙去了西安正確,對于甲的陳述:則甲去了北京錯誤,則甲去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南正確,乙去了北京錯誤,此種假設滿足題意,故甲去了云南.故選:D2、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個方向向量,因為,所以向量為直線的方向向量,故選:D3、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.4、A【解析】由三角形內角及正弦函數(shù)的性質判斷、的真假,應用換元法令,結合對勾函數(shù)的性質確定的值域即知、的真假,根據(jù)各選項復合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.5、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.6、D【解析】將已有數(shù)據(jù)從小到大排序,根據(jù)中位數(shù)的定義確定該組數(shù)據(jù)的中位數(shù).【詳解】由題設,將數(shù)據(jù)從小到大排序可得:,∴中位數(shù)為.故選:D.7、A【解析】設直線的方程為,代入點的坐標即得解.【詳解】解:設直線的方程為,把點坐標代入直線方程得.所以所求的直線方程為.故選:A8、C【解析】在,上分別取點,,使得,連接,,,把幾何體分割成一個三棱柱和一個四棱錐,然后由棱柱、棱錐體積公式計算【詳解】如圖,在,上分別取點,,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點睛】思路點睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結構特征,合理分割,將不規(guī)則幾何體體積的計算轉化為錐體、柱體體積的計算.考查了空間想象能力、邏輯思維能力、運算求解能力9、C【解析】根據(jù)焦點弦的性質即可求出【詳解】依題可知,,所以故選:C10、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計算得解.【詳解】直線的斜率,設其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B11、D【解析】根據(jù)含一個量詞的命題的否定方法:修改量詞,否定結論,直接得到結果.【詳解】命題“,”的否定是“,”.故選:D12、C【解析】由題設易知是的中垂線,進而可得,結合雙曲線參數(shù)關系及離心率公式求雙曲線的離心率即可.【詳解】由題意,是的中垂線,故,由對稱性得,則,故,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設知:圓錐的軸截面為等邊三角形,進而求圓錐的底面周長,由扇形面積公式求圓錐的側面積大小.【詳解】由題設,圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側面積大小為.故答案為:.14、【解析】根據(jù)導數(shù)的幾何意義,結合待定系數(shù)法進行求解即可.【詳解】設曲線的切點為:,由,所以過該切點的切線斜率為:,于切線方程為:,因此有:,設曲線的切點為:,由,所以過該切點的切線斜率為:,于是切線方程為:,因此有:,因為,,即,因此,故答案為:【點睛】關鍵點睛:根據(jù)導數(shù)的幾何意義進行求解是解題的關鍵.15、##【解析】根據(jù)線段為邊作正,得到M在y軸上,求得M的坐標,再由,得到邊的中點坐標,代入雙曲線方程求解.【詳解】以線段為邊作正,則M在y軸上,設,則,因為,所以邊的中點坐標為,因為邊的中點在雙曲線上,所以,因為,所以,即,解得,因為,所以,故答案為:16、【解析】利用垂徑定理計算即可.【詳解】設圓的半徑為,則,得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)結合拋物線的定義求得,由此求得拋物線的方程.(2)設,根據(jù)三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設,則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.18、(1);(2)1.【解析】(1)將圓C的圓心坐標代入直線l的方程計算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點到直線距離公式計算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長,則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長為,則有圓心C到直線l的距離,因此,,解得,所以m的值是1.19、(1)(2)【解析】(1)利用等比數(shù)列通項公式列出方程組,可求解,,從而寫出;(2)化簡數(shù)列,裂項相消法求和即可.【小問1詳解】設數(shù)列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問2詳解】∵,∴∴∴20、(1).(或標準形式)(2)或【解析】(1)根據(jù)題意,求出中垂線方程,與直線聯(lián)立,可得圓心的坐標,求出圓的半徑,即可得答案;(2)分切線的斜率存在與不存在兩種情況討論,求出切線的方程,綜合可得答案【小問1詳解】解:根據(jù)題意,因為圓過兩點,,設的中點為,則,因為,所以的中垂線方程為,即又因為圓心在直線上,聯(lián)立,解得,所以圓心,半徑,故圓的方程為,【小問2詳解】解:當過點P的切線的斜率不存在時,此時直線與圓C相切當過點P的切線斜率k存在時,設切線方程為即(*)由圓心C到切線的距離,可得將代入(*),得切線方程為綜上,所求切線方程為或21、(1);(2).【解析】(1)利用等差數(shù)列的通項公式進行求解即可;(2)運用二次函數(shù)的性質進行求解即可.【小問1詳解】設等差數(shù)列的公差為,所以有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024秋七年級數(shù)學上冊 第二章 有理數(shù)2.2數(shù)軸 2在數(shù)軸上比較數(shù)的大小說課稿(新版)華東師大版
- 2023九年級數(shù)學下冊 第二十八章 銳角三角函數(shù)28.2 解直角三角形及其應用28.2.2 應用舉例第2課時 方向角和坡角問題說課稿 (新版)新人教版
- Module 7 Unit 2 There are twelve boys on the bike(說課稿)-2024-2025學年外研版(三起)英語 四年級上冊
- 16赤壁賦說課稿
- 4《說說我們的學?!罚ㄕf課稿)- 2004-2025學年統(tǒng)編版道德與法治三年級上冊001
- 2025銷售居間合同勞動合同
- Unit4《Bobbys House》lesson6(說課稿)-2024-2025學年北師大版(三起)英語四年級上冊
- 10在牛肚子里旅行 說課稿-2024-2025學年三年級上冊語文統(tǒng)編版
- 16新年的禮物 (說課稿)統(tǒng)編版道德與法治一年級上冊
- 2024年九年級語文上冊 第五單元 第9課《劉姥姥進賈府》說課稿 北師大版
- 2025理論學習計劃2025年理論中心組學習計劃
- 2025年醫(yī)美醫(yī)院公司組織架構和業(yè)務流程
- 防滑防摔倒安全教育
- 乳腺癌課件教學課件
- 連續(xù)性腎替代治療抗菌藥物劑量調整專家共識(2024年版)解讀
- 春節(jié)節(jié)后收心安全培訓
- 2024年廣西區(qū)公務員錄用考試《行測》真題及答案解析
- 高中物理斜面模型大全(80個)
- 2025年高考物理復習壓軸題:電磁感應綜合問題(解析版)
- 2024-2030年芯片行業(yè)市場發(fā)展分析及發(fā)展趨勢前景預測報告
- 2024年個人車位租賃合同經(jīng)典版(二篇)
評論
0/150
提交評論