版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省四校2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“五一”期間,甲、乙、丙三個(gè)大學(xué)生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實(shí)是甲、乙、丙三人陳述都只對了一半(關(guān)于去向的地點(diǎn)僅對一個(gè)).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南2.直線的方向向量為()A. B.C. D.3.雙曲線的漸近線方程為A. B.C. D.4.已知命題:△中,若,則;命題:函數(shù),,則的最大值為.則下列命題是真命題的是()A. B.C. D.5.已知橢圓的焦點(diǎn)分別為,,橢圓上一點(diǎn)P與焦點(diǎn)的距離等于6,則的面積為()A.24 B.36C.48 D.606.某次生物實(shí)驗(yàn)6個(gè)小組的耗材質(zhì)量(單位:千克)分別為1.71,1.58,1.63,1.43,1.85,1.67,則這組數(shù)據(jù)的中位數(shù)是()A.1.63 B.1.67C.1.64 D.1.657.過點(diǎn)且平行于直線的直線方程為()A. B.C. D.8.《九章算術(shù)》與《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側(cè)面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.9.設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)F且垂直于x軸的直線與拋物線C交于A,B兩點(diǎn),若,則()A1 B.2C.4 D.810.直線的傾斜角為()A.30° B.60°C.90° D.120°11.命題“,”的否定是()A., B.,C., D.,12.已知雙曲線的右焦點(diǎn)為,漸近線為,,過的直線與垂直,且交于點(diǎn),交于點(diǎn),若,則雙曲線的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為____________.(結(jié)果保留)14.若直線是曲線的切線,也是曲線的切線,則__________15.已知,是雙曲線的兩個(gè)焦點(diǎn),以線段為邊作正,若邊的中點(diǎn)在雙曲線上,則雙曲線的離心率____________.16.若圓心坐標(biāo)為圓被直線截得的弦長為,則圓的半徑為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:上的點(diǎn)到其準(zhǔn)線的距離為5.(1)求拋物線的方程;(2)已知為原點(diǎn),點(diǎn)在拋物線上,若的面積為6,求點(diǎn)的坐標(biāo).18.(12分)已知直線與圓.(1)當(dāng)直線l恰好平分圓C的周長時(shí),求m的值;(2)當(dāng)直線l被圓C截得的弦長為時(shí),求m的值.19.(12分)已知數(shù)列為各項(xiàng)均為正數(shù)的等比數(shù)列,若(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和20.(12分)已知圓C過兩點(diǎn),,且圓心C在直線上(1)求圓C的方程;(2)過點(diǎn)作圓C的切線,求切線方程21.(12分)已知數(shù)列是等差數(shù)列,(1)求的通項(xiàng)公式;(2)求的最大項(xiàng)22.(10分)已知直線,,,其中與的交點(diǎn)為P(1)求過點(diǎn)P且與平行的直線方程;(2)求以點(diǎn)P為圓心,截所得弦長為8的圓的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題意,先假設(shè)甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設(shè)乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對了一半,假設(shè)甲去了北京正確,對于甲的陳述:則乙去西安錯(cuò)誤,則乙去了云南;對于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對于丙的陳述:甲去了云南錯(cuò)誤,乙去了北京也錯(cuò)誤,故假設(shè)錯(cuò)誤.假設(shè)乙去了西安正確,對于甲的陳述:則甲去了北京錯(cuò)誤,則甲去了云南;對于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對于丙的陳述:甲去了云南正確,乙去了北京錯(cuò)誤,此種假設(shè)滿足題意,故甲去了云南.故選:D2、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個(gè)方向向量,因?yàn)椋韵蛄繛橹本€的方向向量,故選:D3、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.4、A【解析】由三角形內(nèi)角及正弦函數(shù)的性質(zhì)判斷、的真假,應(yīng)用換元法令,結(jié)合對勾函數(shù)的性質(zhì)確定的值域即知、的真假,根據(jù)各選項(xiàng)復(fù)合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.5、A【解析】由題意可得出與、、的值,在根據(jù)橢圓定義得的值,即可得到是直角三角形,即可求出的面積.【詳解】由題意知,.根據(jù)橢圓定義可知,是直角三角形,.故選:A.6、D【解析】將已有數(shù)據(jù)從小到大排序,根據(jù)中位數(shù)的定義確定該組數(shù)據(jù)的中位數(shù).【詳解】由題設(shè),將數(shù)據(jù)從小到大排序可得:,∴中位數(shù)為.故選:D.7、A【解析】設(shè)直線的方程為,代入點(diǎn)的坐標(biāo)即得解.【詳解】解:設(shè)直線的方程為,把點(diǎn)坐標(biāo)代入直線方程得.所以所求的直線方程為.故選:A8、C【解析】在,上分別取點(diǎn),,使得,連接,,,把幾何體分割成一個(gè)三棱柱和一個(gè)四棱錐,然后由棱柱、棱錐體積公式計(jì)算【詳解】如圖,在,上分別取點(diǎn),,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點(diǎn)睛】思路點(diǎn)睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結(jié)構(gòu)特征,合理分割,將不規(guī)則幾何體體積的計(jì)算轉(zhuǎn)化為錐體、柱體體積的計(jì)算.考查了空間想象能力、邏輯思維能力、運(yùn)算求解能力9、C【解析】根據(jù)焦點(diǎn)弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C10、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計(jì)算得解.【詳解】直線的斜率,設(shè)其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B11、D【解析】根據(jù)含一個(gè)量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D12、C【解析】由題設(shè)易知是的中垂線,進(jìn)而可得,結(jié)合雙曲線參數(shù)關(guān)系及離心率公式求雙曲線的離心率即可.【詳解】由題意,是的中垂線,故,由對稱性得,則,故,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)知:圓錐的軸截面為等邊三角形,進(jìn)而求圓錐的底面周長,由扇形面積公式求圓錐的側(cè)面積大小.【詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側(cè)面積大小為.故答案為:.14、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合待定系數(shù)法進(jìn)行求解即可.【詳解】設(shè)曲線的切點(diǎn)為:,由,所以過該切點(diǎn)的切線斜率為:,于切線方程為:,因此有:,設(shè)曲線的切點(diǎn)為:,由,所以過該切點(diǎn)的切線斜率為:,于是切線方程為:,因此有:,因?yàn)椋?,即,因此,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:根據(jù)導(dǎo)數(shù)的幾何意義進(jìn)行求解是解題的關(guān)鍵.15、##【解析】根據(jù)線段為邊作正,得到M在y軸上,求得M的坐標(biāo),再由,得到邊的中點(diǎn)坐標(biāo),代入雙曲線方程求解.【詳解】以線段為邊作正,則M在y軸上,設(shè),則,因?yàn)?,所以邊的中點(diǎn)坐標(biāo)為,因?yàn)檫叺闹悬c(diǎn)在雙曲線上,所以,因?yàn)?,所以,即,解得,因?yàn)?,所以,故答案為?6、【解析】利用垂徑定理計(jì)算即可.【詳解】設(shè)圓的半徑為,則,得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)結(jié)合拋物線的定義求得,由此求得拋物線的方程.(2)設(shè),根據(jù)三角形的面積列方程,求得的值,進(jìn)而求得點(diǎn)的坐標(biāo).【小問1詳解】由拋物線的方程可得其準(zhǔn)線方程,依拋物線的性質(zhì)得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設(shè),則點(diǎn)到直線的距離,又,由題意得,解得或.∴點(diǎn)的坐標(biāo)是或.18、(1);(2)1.【解析】(1)將圓C的圓心坐標(biāo)代入直線l的方程計(jì)算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點(diǎn)到直線距離公式計(jì)算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長,則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長為,則有圓心C到直線l的距離,因此,,解得,所以m的值是1.19、(1)(2)【解析】(1)利用等比數(shù)列通項(xiàng)公式列出方程組,可求解,,從而寫出;(2)化簡數(shù)列,裂項(xiàng)相消法求和即可.【小問1詳解】設(shè)數(shù)列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問2詳解】∵,∴∴∴20、(1).(或標(biāo)準(zhǔn)形式)(2)或【解析】(1)根據(jù)題意,求出中垂線方程,與直線聯(lián)立,可得圓心的坐標(biāo),求出圓的半徑,即可得答案;(2)分切線的斜率存在與不存在兩種情況討論,求出切線的方程,綜合可得答案【小問1詳解】解:根據(jù)題意,因?yàn)閳A過兩點(diǎn),,設(shè)的中點(diǎn)為,則,因?yàn)?,所以的中垂線方程為,即又因?yàn)閳A心在直線上,聯(lián)立,解得,所以圓心,半徑,故圓的方程為,【小問2詳解】解:當(dāng)過點(diǎn)P的切線的斜率不存在時(shí),此時(shí)直線與圓C相切當(dāng)過點(diǎn)P的切線斜率k存在時(shí),設(shè)切線方程為即(*)由圓心C到切線的距離,可得將代入(*),得切線方程為綜上,所求切線方程為或21、(1);(2).【解析】(1)利用等差數(shù)列的通項(xiàng)公式進(jìn)行求解即可;(2)運(yùn)用二次函數(shù)的性質(zhì)進(jìn)行求解即可.【小問1詳解】設(shè)等差數(shù)列的公差為,所以有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超市經(jīng)營合同三篇
- 醫(yī)用電子儀器設(shè)備相關(guān)行業(yè)投資方案范本
- 市場定位與品牌戰(zhàn)略計(jì)劃
- 新型地?zé)嵊脽峤粨Q器相關(guān)項(xiàng)目投資計(jì)劃書
- UV激光切割機(jī)相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- 大孔燒結(jié)空心磚相關(guān)行業(yè)投資規(guī)劃報(bào)告
- 結(jié)合地方文化的藝術(shù)課程設(shè)計(jì)計(jì)劃
- 汽車廠生產(chǎn)線升級改造工程合同三篇
- 葡萄運(yùn)輸合同三篇
- 設(shè)計(jì)優(yōu)化培訓(xùn)
- 兒童流感診療及預(yù)防指南(2024醫(yī)生版)
- 【課件】第21課《小圣施威降大圣》課件2024-2025學(xué)年統(tǒng)編版語文七年級上冊
- 工程計(jì)價(jià)學(xué)-001-國開機(jī)考復(fù)習(xí)資料
- 《孟母三遷》課本劇劇本:環(huán)境對成長的重要性(6篇)
- 《富馬酸盧帕他定口崩片關(guān)鍵質(zhì)量屬性與標(biāo)準(zhǔn)研究》
- 走近非遺 課件 2024-2025學(xué)年湘美版(2024)初中美術(shù)七年級上冊
- 新生兒壞死性小腸結(jié)腸炎臨床診療指南解讀 課件
- 網(wǎng)絡(luò)數(shù)據(jù)安全管理?xiàng)l例
- 2024版2024年【人教版】二年級上冊《道德與法治》全冊教案
- 山東省泰安市2024屆高三上學(xué)期期末數(shù)學(xué)試題(含答案解析)
- 少兒編程獲獎(jiǎng)?wù)n件
評論
0/150
提交評論