甘肅省夏河縣夏河中學(xué)2023屆高三第一次診斷考試數(shù)學(xué)試題理試題_第1頁(yè)
甘肅省夏河縣夏河中學(xué)2023屆高三第一次診斷考試數(shù)學(xué)試題理試題_第2頁(yè)
甘肅省夏河縣夏河中學(xué)2023屆高三第一次診斷考試數(shù)學(xué)試題理試題_第3頁(yè)
甘肅省夏河縣夏河中學(xué)2023屆高三第一次診斷考試數(shù)學(xué)試題理試題_第4頁(yè)
甘肅省夏河縣夏河中學(xué)2023屆高三第一次診斷考試數(shù)學(xué)試題理試題_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

甘肅省夏河縣夏河中學(xué)2023屆高三第一次診斷考試數(shù)學(xué)試題理試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.2.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.3.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度4.設(shè)分別為雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.5.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.6.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.7.已知實(shí)數(shù)滿足,則的最小值為()A. B. C. D.8.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.9.已知函數(shù)的圖像上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在的圖像上,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.411.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為則()A. B. C. D.12.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”這個(gè)問(wèn)題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這位女子每天分別織布多少?根據(jù)上述問(wèn)題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.1二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為____________.14.已知雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,則雙曲線的焦距為______.15.在中,若,則的范圍為________.16.在平面直角坐標(biāo)系中,點(diǎn)P在直線上,過(guò)點(diǎn)P作圓C:的一條切線,切點(diǎn)為T.若,則的長(zhǎng)是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知是等腰直角三角形,.分別為的中點(diǎn),沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當(dāng)三棱錐的體積取最大值時(shí),求平面與平面所成角的正弦值.18.(12分)已知橢圓的離心率為,且過(guò)點(diǎn),點(diǎn)在第一象限,為左頂點(diǎn),為下頂點(diǎn),交軸于點(diǎn),交軸于點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點(diǎn)的坐標(biāo).19.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.20.(12分)若正數(shù)滿足,求的最小值.21.(12分)已知拋物線和圓,傾斜角為45°的直線過(guò)拋物線的焦點(diǎn),且與圓相切.(1)求的值;(2)動(dòng)點(diǎn)在拋物線的準(zhǔn)線上,動(dòng)點(diǎn)在上,若在點(diǎn)處的切線交軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.22.(10分)在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)椋砸乖跁r(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.2、B【解析】

由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過(guò)程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問(wèn)題,屬于中檔題.3、A【解析】

由的最小正周期是,得,即,因此它的圖象向左平移個(gè)單位可得到的圖象.故選A.考點(diǎn):函數(shù)的圖象與性質(zhì).【名師點(diǎn)睛】三角函數(shù)圖象變換方法:4、C【解析】

如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.5、C【解析】

判斷出已知條件中雙曲線的漸近線方程,求得四個(gè)選項(xiàng)中雙曲線的漸近線方程,由此確定選項(xiàng).【詳解】?jī)蓷l漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時(shí)要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項(xiàng)漸近線為,B選項(xiàng)漸近線為,C選項(xiàng)漸近線為,D選項(xiàng)漸近線為.所以雙曲線的方程不可能為.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.6、C【解析】

由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問(wèn)題,屬于基礎(chǔ)題7、A【解析】

所求的分母特征,利用變形構(gòu)造,再等價(jià)變形,利用基本不等式求最值.【詳解】解:因?yàn)闈M足,則,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查通過(guò)拼湊法利用基本不等式求最值.拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.8、A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問(wèn)題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.9、A【解析】

可將問(wèn)題轉(zhuǎn)化,求直線關(guān)于直線的對(duì)稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點(diǎn),進(jìn)一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對(duì)稱直線為,當(dāng)時(shí),,,當(dāng)時(shí),,則當(dāng)時(shí),,單減,當(dāng)時(shí),,單增;當(dāng)時(shí),,,當(dāng),,當(dāng)時(shí),單減,當(dāng)時(shí),單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時(shí),得,解得;當(dāng)與()相切時(shí),滿足,解得,結(jié)合圖像可知,即,故選:A【點(diǎn)睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點(diǎn)問(wèn)題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題10、D【解析】

先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因?yàn)槌傻缺葦?shù)列,所以,解得.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式.屬于簡(jiǎn)單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.11、B【解析】

求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運(yùn)算,求得的值.【詳解】易知,則.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)及其坐標(biāo)的對(duì)應(yīng),考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.12、B【解析】

將問(wèn)題轉(zhuǎn)化為等比數(shù)列問(wèn)題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問(wèn)題.【詳解】根據(jù)實(shí)際問(wèn)題可以轉(zhuǎn)化為等比數(shù)列問(wèn)題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)?,解得,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問(wèn)題很有幫助.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

滿足條件執(zhí)行,否則執(zhí)行.【詳解】本題實(shí)質(zhì)是求分段函數(shù)在處的函數(shù)值,當(dāng)時(shí),.故答案為:1【點(diǎn)睛】本題考查條件語(yǔ)句的應(yīng)用,此類題要做到讀懂算法語(yǔ)句,本題是一道容易題.14、1【解析】

由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點(diǎn)睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為”這一條件的運(yùn)用,另外注意題目中要求的焦距即,容易只計(jì)算到,就得到結(jié)論.15、【解析】

借助正切的和角公式可求得,即則通過(guò)降冪擴(kuò)角公式和輔助角公式可化簡(jiǎn),由,借助正弦型函數(shù)的圖象和性質(zhì)即可解得所求.【詳解】,所以,.因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)的化簡(jiǎn),重點(diǎn)考查學(xué)生的計(jì)算能力,難度一般.16、【解析】

作出圖像,設(shè)點(diǎn),根據(jù)已知可得,,且,可解出,計(jì)算即得.【詳解】如圖,設(shè),圓心坐標(biāo)為,可得,,,,,解得,,即的長(zhǎng)是.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,以及求平面兩點(diǎn)間的距離,運(yùn)用了數(shù)形結(jié)合的思想.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)見解析.(Ⅱ).【解析】

(I)證明平面得出平面,根據(jù)面面垂直的判定定理得到結(jié)論;(II)當(dāng)平面時(shí),棱錐體積最大,建立空間坐標(biāo)系,計(jì)算兩平面的法向量,計(jì)算法向量的夾角得出答案.【詳解】(I)證明:分別為的中點(diǎn),,又平面平面,又平面平面平面(II),為定值當(dāng)平面時(shí),三棱錐的體積取最大值以為原點(diǎn),以為坐標(biāo)軸建立空間直角坐標(biāo)系則,設(shè)平面的法向量為,則即,令可得平面是平面的一個(gè)法向量平面與平面所成角的正弦值為【點(diǎn)睛】本題考查了面面垂直的判定,二面角的計(jì)算,關(guān)鍵是能夠根據(jù)體積的最值確定垂直關(guān)系,從而可以建立起空間直角坐標(biāo)系,利用空間向量法求得二面角,屬于中檔題.18、(1);(2)【解析】

(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點(diǎn),坐標(biāo),設(shè)直線的方程為,易知,可得點(diǎn)的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標(biāo),進(jìn)而由三點(diǎn)共線,即,可用表示的坐標(biāo),再結(jié)合,可建立方程,從而求出的值,即可求得點(diǎn)的坐標(biāo).【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點(diǎn),,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點(diǎn)的坐標(biāo)為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)三點(diǎn)共線,所以,即,所以,所以.因?yàn)椋?,即,所以,解得,又,所以符合題意,計(jì)算可得,,故點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于難題.19、(1)證明見解析;(2).【解析】

(1)要證明平面平面,只需證明平面即可;(2)取的中點(diǎn)D,連接BD,以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,分別計(jì)算平面的法向量為與平面的法向量為,利用夾角公式計(jì)算即可.【詳解】(1)在中,,所以,即.因?yàn)?,,,所?所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點(diǎn)D,連接BD,則.以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點(diǎn)睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問(wèn)題,在利用向量法時(shí),關(guān)鍵是點(diǎn)的坐標(biāo)要寫準(zhǔn)確,本題是一道中檔題.20、【解析】試題分析:由柯西不等式得,所以試題解析:因?yàn)榫鶠檎龜?shù),且,所以.于是由均值不等式可知,當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立.從而.故的最小值為.此時(shí).考點(diǎn):柯西不等式21、(1);(2)點(diǎn)在定直線上.【解析】

(1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;(2)設(shè)出,運(yùn)用導(dǎo)數(shù)求得切線的斜率,求得為切點(diǎn)的切線方程,再由向量的坐標(biāo)表示,可得在定直線上;【詳解】解:(1)依題意設(shè)直線的方程為,由已知得:圓的圓心,半徑,因?yàn)橹本€與圓相切,所以圓心到直線的距離,即,解得或(舍去).所以;(2)依題意設(shè),由(1)知拋物線方程為,所以,所以,設(shè),則以為切點(diǎn)的切線的斜率為,所以切線的方程為.令,,即交軸于點(diǎn)坐標(biāo)為,所以,,,.設(shè)點(diǎn)坐標(biāo)為,則,所以點(diǎn)在定直線上.【點(diǎn)睛】本題考查拋物線的方程和性質(zhì),直線

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論