版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省曲靖市麒麟?yún)^(qū)三中2023年高二上數(shù)學(xué)期末綜合測試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種2.已知,,,其中,,,則()A. B.C. D.3.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=04.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.15.橢圓的長軸長是短軸長的2倍,則離心率()A. B.C. D.6.命題“對任意,都有”的否定是()A.對任意,都有 B.存在,使得C.對任意,都有 D.存在,使得7.已知圓的圓心到直線的距離為,則圓與圓的位置關(guān)系是()A.相交 B.內(nèi)切C.外切 D.外離8.命題“存在,使得”為真命題的一個(gè)充分不必要條件是()A. B.C. D.9.已知,則的大小關(guān)系為()A. B.C. D.10.已知命題p:,,則命題p的否定為()A, B.,C., D.,11.等比數(shù)列中,,,則()A. B.C. D.12.若函數(shù)在上有且僅有一個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長為1,點(diǎn)M在DG上,若直線MB與平面BEF所成的角為45°,則___________.14.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn),若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是___________.15.已知正三棱柱中,底面積為,一個(gè)側(cè)面的周長為,則正三棱柱外接球的表面積為______.16.某個(gè)彈簧振子在振動(dòng)過程中的位移y(單位:mm)與時(shí)間t(單位:s)之間的關(guān)系為,則當(dāng)s時(shí),彈簧振子的瞬時(shí)速度為_________mm/s.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)試討論函數(shù)的單調(diào)性.19.(12分)已知等差數(shù)列滿足:,,數(shù)列的前n項(xiàng)和為(1)求及;(2)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的前項(xiàng)和20.(12分)已知在平面直角坐標(biāo)系中,圓A:的圓心為A,過點(diǎn)B(,0)任作直線l交圓A于點(diǎn)C、D,過點(diǎn)B作與AD平行的直線交AC于點(diǎn)E.(1)求動(dòng)點(diǎn)E的軌跡方程;(2)設(shè)動(dòng)點(diǎn)E的軌跡與y軸正半軸交于點(diǎn)P,過點(diǎn)P且斜率為k1,k2的兩直線交動(dòng)點(diǎn)E的軌跡于M、N兩點(diǎn)(異于點(diǎn)P),若,證明:直線MN過定點(diǎn).21.(12分)已知點(diǎn),,雙曲線C上除頂點(diǎn)外任一點(diǎn)滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點(diǎn)P,且與C的漸近線相交于A,B兩點(diǎn),點(diǎn)A,B分別位于第一、第二象限,,求的最小值.22.(10分)已知直線l的斜率為-2,且與兩坐標(biāo)軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經(jīng)過圓心,圓C被x軸截得的弦長為4.若直線x-2y-1=0與圓C相切,求圓C的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先把4本書按2,1,1分為3組,再全排列求解.【詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C2、C【解析】先令函數(shù),求導(dǎo)判斷函數(shù)的單調(diào)性,并作出函數(shù)的圖像,由函數(shù)的單調(diào)性判斷,再由對稱性可得.【詳解】由,則,同理,,令,則,當(dāng);當(dāng),∴在上單調(diào)遞減,單調(diào)遞增,所以,即可得,又,,由圖的對稱性可知,.故選:C3、D【解析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【詳解】由于傾斜角為120°,故斜率k=-.又直線過點(diǎn)(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【點(diǎn)睛】本題考查直線方程的斜截式,屬于基礎(chǔ)題4、B【解析】由可得拋物線標(biāo)椎方程為:,由焦點(diǎn)和準(zhǔn)線方程即可得解.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,所以拋物線的焦點(diǎn)為,準(zhǔn)線方程為,所以焦點(diǎn)到準(zhǔn)線的距離為,故選:B【點(diǎn)睛】本題考了拋物線標(biāo)準(zhǔn)方程,考查了焦點(diǎn)和準(zhǔn)線相關(guān)基本量,屬于基礎(chǔ)題.5、D【解析】根據(jù)長軸長是短軸長的2倍,得到,利用離心率公式即可求得答案.【詳解】∵,∴,故,故選:D6、B【解析】根據(jù)全稱命題的否定是特稱命題形式,可判斷正確答案.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以命題“對任意,都有”的否定是“存在,使得”故選:B.7、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關(guān)系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因?yàn)?所以,圓的圓心的坐標(biāo)為,半徑,將圓化為標(biāo)準(zhǔn)方程為,其圓心的坐標(biāo)為,半徑,圓心距,兩圓內(nèi)切,故選:B8、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因?yàn)椤按嬖?,使得”為真命題,所以,因此上述命題得個(gè)充分不必要條件是.故選:B.【點(diǎn)睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.9、B【解析】構(gòu)造利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設(shè)恒成立,函數(shù)在上單調(diào)遞減,.故選:B10、A【解析】根據(jù)特稱命題的否定是全稱命題,結(jié)合已知條件,即可求得結(jié)果.【詳解】因?yàn)槊}p:,,故命題p的否定為:,.故選:A.11、D【解析】設(shè)公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項(xiàng)公式計(jì)算可得;【詳解】解:設(shè)公比為,因?yàn)?,,所以,即,解得,所以;故選:D12、C【解析】根據(jù)極值點(diǎn)的意義,可知函數(shù)的導(dǎo)函數(shù)在上有且僅有一個(gè)零點(diǎn).結(jié)合零點(diǎn)存在定理,即可求得的取值范圍.【詳解】函數(shù)則因?yàn)楹瘮?shù)在上有且僅有一個(gè)極值點(diǎn)即在上有且僅有一個(gè)零點(diǎn)根據(jù)函數(shù)零點(diǎn)存在定理可知滿足即可代入可得解得故選:C【點(diǎn)睛】本題考查了函數(shù)極值點(diǎn)的意義,函數(shù)零點(diǎn)存在定理的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】把該幾何體補(bǔ)成一個(gè)正方體,如圖,利用正方體的性質(zhì)證明面面垂直得出直線MB與平面BEF所成的角,然后計(jì)算可得【詳解】把該幾何體補(bǔ)成一個(gè)正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內(nèi)的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:14、【解析】計(jì)算點(diǎn)漸近線的距離,從而得,由勾股定理計(jì)算,由雙曲線定義列式,從而計(jì)算得,即可計(jì)算出離心率.【詳解】設(shè)雙曲線右焦點(diǎn)為,因?yàn)榈闹悬c(diǎn)在雙曲線的漸近線上,由可知,,因?yàn)闉橹悬c(diǎn),所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點(diǎn)睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)15、【解析】首先由條件求出底面邊長和高,然后設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為,則點(diǎn)為正三棱柱外接球的球心,然后求出的長度即可.【詳解】如圖所示,設(shè)底面邊長為,則底面面積為,所以,因此等邊三角形的高為:,因?yàn)橐粋€(gè)側(cè)面的周長為,所以設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為則點(diǎn)為正三棱柱外接球的球心,連接、則在直角三角形中,即外接球的半徑為,所以外接球的表面積為,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:求幾何體的外接球半徑的關(guān)鍵是根據(jù)幾何體的性質(zhì)找出球心的位置.16、0【解析】根據(jù)題意得,進(jìn)而根據(jù)導(dǎo)數(shù)幾何意義求解時(shí)的導(dǎo)函數(shù)值即可得答案.【詳解】解:因?yàn)?,所以求?dǎo)得,所以根據(jù)導(dǎo)數(shù)的幾何意義得該振子在時(shí)的瞬時(shí)速度為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)將條件化為基本量并解出,進(jìn)而求得答案;(2)通過裂項(xiàng)法即可求出答案.【小問1詳解】由,.得:解得:故.【小問2詳解】當(dāng)時(shí),.所以時(shí),.18、(1)(2)詳見解析.【解析】(1)由,求導(dǎo),得到,寫出切線方程;(2)求導(dǎo),再分,,討論求解.【小問1詳解】解:因?yàn)?,所以,則,所以,所以曲線在點(diǎn)處的切線方程是,即;【小問2詳解】因?yàn)?,所以,?dāng)時(shí),成立,則在上遞減;當(dāng)時(shí),令,得,當(dāng)時(shí),,當(dāng)時(shí),,所以在上遞減,在上遞增;綜上:當(dāng)時(shí),在上遞減;當(dāng)時(shí),在上遞減,在上遞增;19、(1);(2)【解析】(1)先根據(jù)已知求出,再求及.(2)先根據(jù)已知得到,再利用分組求和求數(shù)列的前項(xiàng)和.【詳解】(1)設(shè)等差數(shù)列的公差為d,因?yàn)?,,所以,解得,所以?=.(2)由已知得,由(1)知,所以,=.【點(diǎn)睛】(1)本題主要考查等差數(shù)列的通項(xiàng)和前n項(xiàng)和求法,考查分組求和和等比數(shù)列的求和公式,意在考查學(xué)生對這些知識的掌握水平和計(jì)算推理能力.(2)有一類數(shù)列,它既不是等差數(shù)列,也不是等比數(shù)列,但是數(shù)列是等差數(shù)列或等比數(shù)列或常見特殊數(shù)列,則可以將這類數(shù)列適當(dāng)拆開,可分為幾個(gè)等差、等比數(shù)列或常見的特殊數(shù)列,然后分別求和,再將其合并即可.這叫分組求和法.20、(1)(2)證明見解析【解析】(1)作出圖象,易知|EB|+|EA|為定值,根據(jù)橢圓定義即可判斷點(diǎn)E的軌跡,從而寫出其軌跡方程;(2)設(shè),當(dāng)直線MN斜率存在時(shí),設(shè)直線MN的方程為:,聯(lián)立MN方程和E的軌跡方程得根與系數(shù)的關(guān)系,根據(jù)解出k與m的關(guān)系即可以判斷MN過定點(diǎn);最后再考慮MN斜率不存在時(shí)是否也過該定點(diǎn)即可.【小問1詳解】由圓A:可得(,∴圓心A(-,0),圓的半徑r=8,,,可得,,,由橢圓的定義可得:點(diǎn)E的軌跡是以A(,0)、B(,0)為焦點(diǎn),2a=8的橢圓,即a=4,c=,∴=16-7=9,∴動(dòng)點(diǎn)E的軌跡方程為;【小問2詳解】由(1)知,P(0,3),設(shè),當(dāng)直線MN的斜率存在時(shí),設(shè)直線MN的方程為:,由,可得,∴,,∵,∴,即,整理可得:,∴k=m+3或m=3,當(dāng)m=3時(shí),直線MN的方程為:,此時(shí)過點(diǎn)P(0,3)不符合題意,∴k=m+3,∴直線MN的方程為:此時(shí)直線MN過點(diǎn)(-1,-3),當(dāng)直線MN的斜率不存在時(shí),,,解得,此時(shí)直線MN的方程為:,過點(diǎn)(-1,-3),綜上所述:直線MN過定點(diǎn)(-1,-3).21、(1)(2)1【解析】(1)由題意得,化簡可得答案,(2)求出漸近線方程,設(shè)點(diǎn),,,,,由可得,代入雙曲線方程化簡可得,然后表示的坐標(biāo),再進(jìn)行數(shù)量積運(yùn)算,化簡后利用基本不等式可得答案【小問1詳解】由題意得,即,整理得,因?yàn)殡p曲線的頂點(diǎn)坐標(biāo)滿足上式,所以C的方程為.【小問2詳解】由(1)可知,曲線C的漸近線方程為,設(shè)點(diǎn),,,,,由,得,整理得,①,把①代入,整理得②,因?yàn)椋?,所?由,得,則,當(dāng)且僅當(dāng)時(shí)等號成立,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年電腦設(shè)備采購協(xié)議模板詳解版B版
- 2024版工程車合同
- 2025版數(shù)據(jù)中心水電供應(yīng)與安全保障服務(wù)合同3篇
- 二零二五年度個(gè)人生物科技抵押擔(dān)保投資合同模板3篇
- 二零二五年度倉儲(chǔ)貨物倉單質(zhì)押融資及倉儲(chǔ)物流一體化服務(wù)協(xié)議3篇
- 景觀小品及構(gòu)筑物鋼結(jié)構(gòu)施工方案與技術(shù)措施
- 隧道施工動(dòng)火作業(yè)安全方案
- 租房合同中的隱性費(fèi)用
- 詩詞大會(huì)朗誦活動(dòng)方案
- 國際交流閱讀活動(dòng)方案
- 人才梯隊(duì)(人才庫、人才盤點(diǎn))建設(shè)方案
- 廣西柳州市2023-2024學(xué)年四年級上學(xué)期期末考試語文試卷
- 《芯片制造工藝》課件
- 中山大學(xué)研究生中特考試大題
- 手術(shù)室護(hù)理實(shí)踐指南術(shù)中低體溫預(yù)防
- 鋼管混凝土柱計(jì)算
- 四川省成都市2022-2023學(xué)年六年級上學(xué)期語文期末考試試卷(含答案)5
- 初一下冊譯林版英語常識和習(xí)語50題練習(xí)題及答含答案
- 違規(guī)建筑綜合整頓行動(dòng)方案(二篇)
- 酒店明住宿清單(水單)
- 《中華民族大團(tuán)結(jié)》(初中) 全冊教案(共12課)
評論
0/150
提交評論