四川省邛崍市文昌中學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第1頁
四川省邛崍市文昌中學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第2頁
四川省邛崍市文昌中學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第3頁
四川省邛崍市文昌中學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第4頁
四川省邛崍市文昌中學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省邛崍市文昌中學(xué)校2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若任取,則x與y差的絕對值不小于1的概率為()A. B.C. D.2.已知拋物線的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,則拋物線的準(zhǔn)線方程為()A. B.C. D.3.若,則()A.1 B.0C. D.4.方程所表示的曲線為()A.射線 B.直線C.射線或直線 D.無法確定5.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.56.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.7.在二面角的棱上有兩個點(diǎn)、,線段、分別在這個二面角的兩個面內(nèi),并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.8.設(shè)平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.9.設(shè)等比數(shù)列,有下列四個命題:①{a②是等比數(shù)列;③是等比數(shù)列;④lgan其中正確命題的個數(shù)是()A.1 B.2C.3 D.410.直線(t為參數(shù))被圓所截得的弦長為()A. B.C. D.11.已知直線l:過橢圓的左焦點(diǎn)F,與橢圓在x軸上方的交點(diǎn)為P,Q為線段PF的中點(diǎn),若,則橢圓的離心率為()A. B.C. D.12.設(shè)等差數(shù)列的前n項(xiàng)和為,若,,則()A.60 B.80C.90 D.100二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,則直線與平面所成角的正弦值為__________14.已知方程,若此方程表示橢圓,則實(shí)數(shù)的取值范圍是________;若此方程表示雙曲線,則實(shí)數(shù)的取值范圍是________.15.有一道樓梯共10階,小王同學(xué)要登上這道樓梯,登樓梯時每步隨機(jī)選擇一步一階或一步兩階,小王同學(xué)7步登完樓梯的概率為___________.16.已知直線與雙曲線交于兩點(diǎn),則該雙曲線的離心率的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的左、右焦點(diǎn)分別為,短軸的一個端點(diǎn)到的距離為,且橢圓過點(diǎn)過且不與兩坐標(biāo)軸平行的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱.(1)求橢圓的方程(2)當(dāng)直線的斜率為1時,求的面積;(3)若點(diǎn),求證:三點(diǎn)共線.18.(12分)某中醫(yī)藥研究所研制出一種新型抗過敏藥物,服用后需要檢驗(yàn)血液抗體是否為陽性,現(xiàn)有n(n∈N*)份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),需要檢驗(yàn)n次;②混合檢驗(yàn),將其中k(k∈N*,2≤k≤n)份血液樣本分別取樣混合在一起檢驗(yàn),若結(jié)果為陰性,則這k份的血液全為陰性,因而這k份血液樣本只需檢驗(yàn)一次就夠了,若檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪份為陽性,就需要對這k份再逐份檢驗(yàn),此時這k份血液的檢驗(yàn)次數(shù)總共為k+1次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是相互獨(dú)立的,且每份樣本是陽性的概率為p(0<p<1).(1)假設(shè)有5份血液樣本,其中只有兩份樣本為陽性,若采取逐份檢驗(yàn)的方式,求恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率.(2)現(xiàn)取其中的k(k∈N*,2≤k≤n)份血液樣本,采用逐份檢驗(yàn)的方式,樣本需要檢驗(yàn)的次數(shù)記為ξ1;采用混合檢驗(yàn)的方式,樣本需要檢驗(yàn)的總次數(shù)記為ξ2.(i)若k=4,且,試運(yùn)用概率與統(tǒng)計的知識,求p的值;(ii)若,證明:.19.(12分)已知函數(shù),(1)求的單調(diào)區(qū)間;(2)當(dāng)時,求證:在上恒成立20.(12分)在下列所給的三個條件中任選一個,補(bǔ)充在下面問題中,并完成解答(若選擇多個條件分別解答,則按第一個解答計分).①與直線平行;②與直線垂直;③直線l的一個方向向量為;已知直線l過點(diǎn),且___________.(1)求直線l的一般方程;(2)若直線l與圓C:相交于M,N兩點(diǎn),求弦長.21.(12分)從某居民區(qū)隨機(jī)抽取2021年的10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,計算得,,,(1)求家庭的月儲蓄對月收入的線性回歸方程;(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);(3)利用(1)中的回歸方程,分析2021年該地區(qū)居民月收入與月儲蓄之間的變化情況,并預(yù)測當(dāng)該居民區(qū)某家庭月收入為7千元,該家庭的月儲蓄額.附:線性回歸方程系數(shù)公式中,,,其中,為樣本平均值22.(10分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(diǎn)(1)求證:CE//平面PAB;(2)若M是線段CE上一動點(diǎn),則線段AD上是否存在點(diǎn),使MN//平面PAB?說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意,在平面直角坐標(biāo)系中分析以及與差的絕對值不小于1所對應(yīng)的平面區(qū)域,求出其面積,由幾何概型公式計算可得答案.【詳解】根據(jù)題意,,其對應(yīng)的區(qū)域?yàn)檎叫?,其面積,若與差的絕對值不小于1,即,即或,對應(yīng)的區(qū)域?yàn)閳D中的陰影部分,其面積為,故與差的絕對值不小于1的概率.故選:C2、D【解析】先求得拋物線的焦點(diǎn)坐標(biāo),再根據(jù)點(diǎn)F與圓上點(diǎn)的距離的最大值為6求解.【詳解】因?yàn)閽佄锞€的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,所以,解得,所以拋物線準(zhǔn)線方程為,故選:D3、C【解析】由結(jié)合二項(xiàng)式定理可得出,利用二項(xiàng)式系數(shù)和公式可求得的值.【詳解】,當(dāng)且時,,因此,.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查二項(xiàng)式系數(shù)和的計算,解題的關(guān)鍵是熟悉二項(xiàng)式系數(shù)和公式,考查學(xué)生的轉(zhuǎn)化能力與計算能力,屬于基礎(chǔ)題.4、C【解析】將方程化為或,由此可得所求曲線.【詳解】由得:或,即或,方程所表示的曲線為射線或直線.故選:C.5、C【解析】直線l過定點(diǎn)D(1,1),當(dāng)時,弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點(diǎn),∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時,直線l被圓截得的弦長最短,,弦長=.故選:C.6、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.7、C【解析】設(shè)這個二面角的度數(shù)為,由題意得,從而得到,由此能求出結(jié)果.【詳解】設(shè)這個二面角的度數(shù)為,由題意得,,,解得,∴,∴這個二面角的度數(shù)為,故選:C.【點(diǎn)睛】本題考查利用向量的幾何運(yùn)算以及數(shù)量積研究面面角.8、D【解析】由向量的數(shù)量積公式結(jié)合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因?yàn)樗械幕臼录灿蟹N,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D9、C【解析】根據(jù)等比數(shù)列的性質(zhì)對四個命題逐一分析,由此確定正確命題的個數(shù).【詳解】是等比數(shù)列可得(為定值)①為常數(shù),故①正確②,故②正確③為常數(shù),故③正確④不一定為常數(shù),故④錯誤故選C.【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.10、C【解析】求得直線普通方程以及圓的直角坐標(biāo)方程,利用弦長公式即可求得結(jié)果.【詳解】因?yàn)橹本€的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.11、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點(diǎn),設(shè)橢圓的右焦點(diǎn)為,所以,又是的中點(diǎn),是的中點(diǎn),所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:12、D【解析】由題設(shè)條件求出,從而可求.【詳解】設(shè)公差為,因?yàn)?,,故,解得,故,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標(biāo)系,利用空間向量夾角公式進(jìn)行求解即可【詳解】建立如圖所示的空間直角坐標(biāo)系,設(shè)該正方體的棱長為1,所以,,,,因此,,,設(shè)平面的法向量為:,所以有:,令,所以,因此,設(shè)與的夾角為,直線與平面所成角為,所以有,故答案為:14、①.②.【解析】分別根據(jù)橢圓、雙曲線的標(biāo)準(zhǔn)方程的特征建立不等式即可求解.【詳解】當(dāng)方程表示橢圓時,則有且,所以的取值范圍是;當(dāng)方程表示雙曲線時,則有或,所以的取值范圍是.故答案為:;15、【解析】由題意可分為步、步、步、步、步、步共6種情況,分別求出每種的基本事件數(shù),再利用古典概型的概率公式計算可得;【詳解】解:由題意可分為步、步、步、步、步、步共6種情況,①步:即步兩階,有種;②步:即步兩階與步一階,有種;③步:即步兩階與步一階,有種;④步:即步兩階與步一階,有種;⑤步:即步兩階與步一階,有種;⑥步:即步一階,有種;綜上可得一共有種情況,滿足7步登完樓梯的有種;故7步登完樓梯的概率為故答案為:16、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)證明見解析.【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)聯(lián)立直線和橢圓的方程求出弦長和三角形的高即得解;(3)聯(lián)立直線和橢圓的方程,得到韋達(dá)定理,再利用平面向量證明.【小問1詳解】解:由題得,所以橢圓方程為,因?yàn)闄E圓過點(diǎn)所以,所以所以橢圓的方程為.【小問2詳解】解:由題得,所以直線的方程為即,聯(lián)立直線和橢圓方程得,所以,點(diǎn)到直線的距離為.所以的面積為.【小問3詳解】解:設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得,設(shè),所以,由題得,,所以,所以,所以,又有公共點(diǎn),所以三點(diǎn)共線.18、(1);(2)(i);(ii)證明見解析.【解析】(1)設(shè)恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來為事件A,由古典概型概率計算公式可得答案;(2)(i)由已知,可能取值分別為1,,求解概率然后求期望推出關(guān)于的關(guān)系式;(ii)由,計算出,再由,構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的最值可得答案..【詳解】(1)設(shè)恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來為事件A,所以前2次檢驗(yàn)中有一陽性有一陰性樣本第三次為陽性樣本,或者前3次均為陰性樣本,則.(2)(i),所以,可能取值分別為1,,,,因?yàn)榈?,因?yàn)椋裕?(ii)因?yàn)?,由(i)知,所以,設(shè),,所以在單調(diào)遞增,所以由于,所以,即,得證.【(4)(5)選做】19、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)證明見解析.【解析】(1)求得,根據(jù)其正負(fù),即可判斷函數(shù)單調(diào)性從而求得函數(shù)單調(diào)區(qū)間;(2)根據(jù)題意,轉(zhuǎn)化目標(biāo)不等式為,分別構(gòu)造函數(shù),,利用導(dǎo)數(shù)研究其單調(diào)性,即可證明.【小問1詳解】因?yàn)椋士傻?,又為單調(diào)增函數(shù),令,解得,故當(dāng)時,;當(dāng)時,,故的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.【小問2詳解】當(dāng)時,,要證,即證,又,則只需證,即證,令,,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,故當(dāng)時,取得最大值;令,,又為單調(diào)增函數(shù),且時,,當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,故當(dāng)時,取得最小值.則,且當(dāng)時,同時取得最小值和最大值,故,即,也即時恒成立.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,以及利用導(dǎo)數(shù)研究恒成立問題;處理本題的關(guān)鍵是合理轉(zhuǎn)化目標(biāo)式,屬中檔題.20、(1)若選擇①②,則直線方程為:;若選擇③,則直線方程為;(2)若選擇①②,則;若選擇③,則.【解析】(1)根據(jù)所選擇的條件,結(jié)合直線過點(diǎn),即可寫出直線的方程;(2)利用(1)中所求直線方程,以及弦長公式,即可求得結(jié)果.【小問1詳解】若選①與直線平行,則直線的斜率;又其過點(diǎn),故直線的方程為,則其一般式為;若選②與直線垂直,則直線的斜率滿足,解得;又其過點(diǎn),故直線的方程為,則其一般式為;若選③直線l的一個方向向量為,則直線的斜率;又其過點(diǎn),故直線的方程為,則其一般式為;綜上所述:若選擇①②,則直線方程為:;若選擇③,則直線方程為.【小問2詳解】對圓C:,其圓心為,半徑,根據(jù)(1)中所求,若選擇①②,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長;若選擇③,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長.綜上所述,若選擇①②,則;若選擇③,則.21、(1)=0.3x-0.4(2)正相關(guān)(3)1.7千元【解析】(1)由題意得到n=10,求得,進(jìn)而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【小問1詳解】由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.【小問2詳解】因?yàn)?,所以變量y的值隨x的值增加而增加,故x與y之間是正相關(guān).【小問3詳解】將x=7代入回歸方程可以預(yù)測該家庭的月儲蓄為=0.3×7-0.4=1.7(千元).22、(1)證明見解析;(2)存

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論