版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
高級中學(xué)名校試卷PAGEPAGE1江蘇省南通市如皋市2022-2023學(xué)年高二下學(xué)期教學(xué)質(zhì)量調(diào)研(二)數(shù)學(xué)試題一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.每小題給出的四個選項(xiàng)中,只有一項(xiàng)符合題目要求.1.已知集合,,若,則實(shí)數(shù)的值可能為()A. B. C.0 D.2〖答案〗C〖解析〗因?yàn)楫?dāng)時,,當(dāng)時,,所以因?yàn)?,所以,所以,得,所以AB錯誤,對于C,若,則,此時,所以C正確,對于D,若,則,此時,不合題意,所以D錯誤,故選:C.2.已知冪函數(shù),下列能成為“是上奇函數(shù)”充分條件的是()A., B.,C., D.,〖答案〗D〖解析〗對于A,,的定義域?yàn)椋?,是定義在上的奇函數(shù),充分性不成立,A錯誤;對于B,,的定義域?yàn)?,為非奇非偶函?shù),充分性不成立,B錯誤;對于C,,的定義域?yàn)?,又,是定義在上的偶函數(shù),充分性不成立,C錯誤;對于D,,的定義域?yàn)?,又,是定義在上的奇函數(shù),充分性成立,D正確.故選:D.3.函數(shù)的零點(diǎn)個數(shù)為()A.1 B.3 C.5 D.7〖答案〗B〖解析〗定義域?yàn)镽,,又,故為奇函數(shù),當(dāng)時,由于恒成立,故恒成立,無零點(diǎn),故時,也不存在零點(diǎn),當(dāng)時,,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,故在處取得極大值,也時最大值,,顯然,,故由零點(diǎn)存在性定理知,在上存在一零點(diǎn),結(jié)合函數(shù)為奇函數(shù),在上存在一零點(diǎn),綜上,一共有3個零點(diǎn).故選:B.4.云計(jì)算是一種全新的網(wǎng)絡(luò)應(yīng)用概念,其核心概念是以互聯(lián)網(wǎng)為中心,在網(wǎng)站上提供快速且安全的云計(jì)算服務(wù)與數(shù)據(jù)存儲.近年來,我國云計(jì)算市場規(guī)模持續(xù)增長.某科技公司云計(jì)算市場規(guī)模與年份代碼的關(guān)系可以用模型擬合,設(shè),2018年至2022年數(shù)據(jù)統(tǒng)計(jì)表如下:年份2018年2019年2020年2021年2022年年份代碼12345云計(jì)算市場規(guī)模720712005100.851.31.852.32.7若根據(jù)上表得到回歸方程,則該科技公司2025年云計(jì)算市場規(guī)模約為()A. B. C. D.〖答案〗B〖解析〗,,將代入回歸方程,可得,即,所以關(guān)于的回歸方程為,2025年即當(dāng)時,,此時.故:B.5.若,,,則下列關(guān)系正確的是()A. B. C. D.〖答案〗A〖解析〗因?yàn)橹笖?shù)函數(shù)為R上的單調(diào)遞減函數(shù),故可得,,故,故選:A.6.已知函數(shù),存在最小值,則實(shí)數(shù)的取值范圍為()A. B. C. D.〖答案〗A〖解析〗,令得且時,時,時,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,又,又時,或或,所以其圖象如下:由圖像,時存在最小值,必有,故選:7.已知當(dāng)時,.根據(jù)以上信息,若對任意,有,則()A. B. C. D.〖答案〗B〖解析〗由題知,,同理得,因?yàn)?,有,所?故選:B.8.已知函數(shù),,(其中為自然對數(shù)的底數(shù)).若存在實(shí)數(shù),使得,則實(shí)數(shù)的取值范圍為()A. B. C. D.〖答案〗C〖解析〗因?yàn)榇嬖趯?shí)數(shù),使得,所以,即,令,則,函數(shù)在R上單調(diào)遞增,,即的最小值,令,,當(dāng)時,,當(dāng)時,,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,時,函數(shù)取得極小值即最小值,,.故選:C.二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對得5分,部分選對得2分,有項(xiàng)選錯得0分.9.若函數(shù)的單調(diào)遞增區(qū)間為,則可能是()A. B.C. D.〖答案〗BD〖解析〗A選項(xiàng),的定義域?yàn)?,故單調(diào)遞增區(qū)間不可能為,A錯誤;B選項(xiàng),定義域?yàn)?,,令,解得,所以單調(diào)遞增區(qū)間為,B正確;C選項(xiàng),定義域?yàn)?,,令,解得或,所以單調(diào)遞增區(qū)間為,,C錯誤;D選項(xiàng),定義域?yàn)?,,令,解得,故單?dú)遞增區(qū)間為,D正確.故選:BD.10.某同學(xué)在高二年級所有檢測中語文和數(shù)學(xué)成績均服從正態(tài)分布,記語文成績?yōu)?,?shù)學(xué)成績?yōu)?,且,,則下列結(jié)論正確的是()A. B.C. D.〖答案〗ACD〖解析〗對于A,因?yàn)?,所以,所以A正確,對于B,因?yàn)?,所以,所以B錯誤,對于C,因?yàn)?,所以,所以C正確,對于D,因?yàn)?,,所以,所以D正確,故選:ACD.11.若展開式中二項(xiàng)式系數(shù)和為64,下列結(jié)論正確的是()A. B.展開式中第3項(xiàng)為C.展開式中常數(shù)項(xiàng)為60 D.展開式中各項(xiàng)系數(shù)之和為729〖答案〗AD〖解析〗對于A,因?yàn)檎归_式中二項(xiàng)式系數(shù)和為64,所以,得,所以A正確,對于B,由選項(xiàng)A可知二項(xiàng)式為,則其展開式的通項(xiàng)公式為,所以展開式中第3項(xiàng)為,所以B錯誤,對于C,令,得,所以展開式中常數(shù)項(xiàng)為,所以C錯誤,對于D,令,則,所以展開式中各項(xiàng)系數(shù)之和為729,所以D正確,故選:AD.12.在長方體中,,,為棱上任意一點(diǎn),則下列結(jié)論正確的是()A.長方體表面積的最大值為6B.長方體外接球表面積的最小值為C.到平面的距離的最大值為D.三棱錐體積的最大值為〖答案〗AD〖解析〗對于A,設(shè),(),則該長方體表面積為,所以當(dāng)時,S取得最大值6,即長方體表面積的最大值為6,所以A正確,對于B,設(shè),(),設(shè)長方體外接球半徑為,則,所以當(dāng)時,上式取得最小值3,此時的最小值為,所以長方體外接球表面積的最小值為,所以B錯誤,對于C,設(shè)點(diǎn)到平面的距離為,即點(diǎn)到平面的距離為,因?yàn)椋?,,所以,設(shè),(),則所以,因?yàn)椋?,所以到平面的距離無最大值,所以C錯誤,對于D,,當(dāng)且僅當(dāng),即時取等號,所以三棱錐體積的最大值為,所以D正確,故選:AD.三、填空題:本題共4小題,每小題5分,共20分.請把〖答案〗直接填寫在答題卡相應(yīng)位置上.13.已知,則的值為______.〖答案〗〖解析〗因?yàn)?,所以,即,所以,所以,所?故〖答案〗為:.14.如圖,直三棱柱所有棱長均為2,M為的中點(diǎn),則異面直線與所成角的余弦值為______.〖答案〗〖解析〗取的中點(diǎn),連接;因?yàn)榉謩e為的中點(diǎn),所以且,或其補(bǔ)角是異面直線與所成角;因?yàn)橹比庵欣忾L均為2,所以,,;在中,.所以異面直線與所成角的余弦值為.故〖答案〗為:.15.某同學(xué)連續(xù)兩天在學(xué)校信息圖文中心2樓和3樓進(jìn)行拓展閱讀,第一天等可能地從信息圖文中心2樓和3樓中選擇一層樓進(jìn)行閱讀.如果第一天去2樓的條件下第二天還在2樓閱讀的概率為0.7;第一天去3樓的條件下第二天去2樓閱讀的概率為0.8,該同學(xué)第二天去3樓閱讀的概率為______.〖答案〗〖解析〗設(shè)事件“第天去2樓閱讀”,事件“第天去3樓閱讀”,則,,;所以.故〖答案〗為:.16.已知定義在上的函數(shù)滿足,且為偶函數(shù),則______.〖答案〗〖解析〗為偶函數(shù),,令,則,,;又,,即,,是周期為的周期函數(shù),,由得:,即,又,,.故〖答案〗為:.四、解答題:本題共6小題,共70分.請?jiān)诖痤}卡指定區(qū)域內(nèi)作答.解答時應(yīng)寫出文字說明、證明過程或演算步驟.17.已知函數(shù)且.(1)判斷函數(shù)的奇偶性,并說明理由;(2)若,當(dāng)時,求的值域.解:(1)為奇函數(shù),理由如下:由得:,的定義域?yàn)?;,為定義在上的奇函數(shù).(2),,;方法一:當(dāng)時,,,,,即的值域?yàn)?;方法二:令,在上單調(diào)遞減,,,,,即的值域?yàn)?18.如圖,三棱錐中,平面,線段的中點(diǎn)為,,且.(1)證明:平面;(2)若,,求二面角的余弦值.(1)證明:法一:在中,,線段的中點(diǎn)為,所以,因?yàn)槠矫?,平面,所以.因?yàn)槠矫?,平面,,所以平面.法二:如圖,以為基底建立空間直角坐標(biāo)系.因?yàn)椋?,線段的中點(diǎn)為,所以,所以.設(shè)平面的一個法向量為,由,得到,解得.令,則,所以.易知,平面的一個法向量為,設(shè)平面的一個法向量為,則由,得到,取,所以.又因?yàn)?,所以,所以平面?)解:在中,過點(diǎn)A作,垂足為,連接,因?yàn)槠矫?,平面,所?又因?yàn)?,平面,平面,,所以平面,又因?yàn)槠矫妫裕忠驗(yàn)?,平面,平面,,所以平面,所以,所以為二面角的平面角,在中,,,所以,.同理,在中,,所以.所以二面角的余弦值.法二,設(shè)二面角的平面角為,則為銳角,則,所以二面角的余弦值.19.一盒子中放有個大小相同的小球,其中個紅球,個白球.現(xiàn)從中抽取兩次,一次抽取兩個球,若第一次抽出后不放回.(1)求第一次抽到兩個紅球的條件下,第二次抽到兩個白球的概率;(2)若一次抽出的兩個球同色即中獎,求中獎次數(shù)的概率分布和數(shù)學(xué)期望.解:(1)記“第一次抽到兩個紅球”為事件A,“第二次抽到兩個白球”為事件,則,,.(2)由題意知:所有可能的取值為,;;;的概率分布為:數(shù)學(xué)期望.20.已知函數(shù),其中.(1)當(dāng)時,求函數(shù)的極小值;(2)若在處的切線與圖象也相切,求實(shí)數(shù)的值.解:(1)當(dāng)時,,其中所以,令,解得.列表如下:極小值所以函數(shù)的極小值為.(2)因?yàn)?,所以,所以.因?yàn)?,所以在處的切線方程為.因?yàn)榕c圖像相切,所以有兩個相等的實(shí)根,所以,解得,所以實(shí)數(shù)的值為或.21.直播帶貨業(yè)務(wù)是當(dāng)前行業(yè)電商的主要業(yè)務(wù)構(gòu)成之一.某公司通過抖音,快手,淘寶等直播平臺與網(wǎng)紅,明星等進(jìn)行帶貨合作,甲公司和乙公司所售商品存在競爭關(guān)系,兩公司在某購物平臺上同時開啟直播帶貨促銷活動.(1)現(xiàn)對某時段21-40歲年齡段100名用戶觀看直播后選擇甲公司和乙公司所售商品選購情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表:用戶年齡段選購甲公司選購乙公司合計(jì)21-30歲156031-40歲1540合計(jì)100請完成上述列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為選擇哪家直播間購物與用戶年齡有關(guān)?(2)五一期間,甲公司購物平臺直播間進(jìn)行“搶購”活動,假設(shè)直播間每人下單的概率均為,直播間每人下單成功與否互不影響.若從直播間隨機(jī)抽取5人,記5人中恰有3人下單成功的概率為,求的最大值,并求出取得最大值時的值.參考公式:,其中.臨界值表:0.100.050.010.0050.0012.7063.8416.6357.87910.828解:(1)由題意可得列聯(lián)表:用戶年齡段選購甲公司選購乙公司合計(jì)21—30歲15456031—40歲251540合計(jì)4060100提出假設(shè):選擇哪家直播間購物與用戶年齡無關(guān).因?yàn)?,所以,即假設(shè)不成立,所以有99.9%的把握認(rèn)為選擇哪家直播間購物與用戶年齡有關(guān).(2)設(shè)5人中下單成功的人數(shù)為,因?yàn)橹辈ラg每人下單成功與否互不影響,所以,所以.所以,令,解得.列表如下:p0遞增極大值遞減所以當(dāng)時,取得極大值,即最大值.22.已知函數(shù),其中為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性,并說明理由;(2)當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍.解:(1)的定義域?yàn)椋?,得,?dāng)時,,所以在上遞減,當(dāng)時,由,得,由,得,所以在上遞減,在上遞增,綜上,當(dāng)時,在上遞減;時,在上遞減,在上遞增,(2)由,得,即,令,則,令,則,①當(dāng)時,,,所以在上遞增,所以,所以在上遞增,所以,符合題意,②當(dāng)時,,,所以在上遞增,,若,則,使,所以當(dāng)時,,所以在上遞減,所以時,,不合題意,舍去,若,則在上恒小于零,所以在上遞減,所以時,,不合題意,舍去,③當(dāng)時,,,所以在上遞減,所以,所以在上遞減,所以,不合題意,舍去,綜上,,即實(shí)數(shù)的取值范圍為.江蘇省南通市如皋市2022-2023學(xué)年高二下學(xué)期教學(xué)質(zhì)量調(diào)研(二)數(shù)學(xué)試題一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.每小題給出的四個選項(xiàng)中,只有一項(xiàng)符合題目要求.1.已知集合,,若,則實(shí)數(shù)的值可能為()A. B. C.0 D.2〖答案〗C〖解析〗因?yàn)楫?dāng)時,,當(dāng)時,,所以因?yàn)?,所以,所以,得,所以AB錯誤,對于C,若,則,此時,所以C正確,對于D,若,則,此時,不合題意,所以D錯誤,故選:C.2.已知冪函數(shù),下列能成為“是上奇函數(shù)”充分條件的是()A., B.,C., D.,〖答案〗D〖解析〗對于A,,的定義域?yàn)椋?,是定義在上的奇函數(shù),充分性不成立,A錯誤;對于B,,的定義域?yàn)?,為非奇非偶函?shù),充分性不成立,B錯誤;對于C,,的定義域?yàn)椋?,是定義在上的偶函數(shù),充分性不成立,C錯誤;對于D,,的定義域?yàn)?,又,是定義在上的奇函數(shù),充分性成立,D正確.故選:D.3.函數(shù)的零點(diǎn)個數(shù)為()A.1 B.3 C.5 D.7〖答案〗B〖解析〗定義域?yàn)镽,,又,故為奇函數(shù),當(dāng)時,由于恒成立,故恒成立,無零點(diǎn),故時,也不存在零點(diǎn),當(dāng)時,,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,故在處取得極大值,也時最大值,,顯然,,故由零點(diǎn)存在性定理知,在上存在一零點(diǎn),結(jié)合函數(shù)為奇函數(shù),在上存在一零點(diǎn),綜上,一共有3個零點(diǎn).故選:B.4.云計(jì)算是一種全新的網(wǎng)絡(luò)應(yīng)用概念,其核心概念是以互聯(lián)網(wǎng)為中心,在網(wǎng)站上提供快速且安全的云計(jì)算服務(wù)與數(shù)據(jù)存儲.近年來,我國云計(jì)算市場規(guī)模持續(xù)增長.某科技公司云計(jì)算市場規(guī)模與年份代碼的關(guān)系可以用模型擬合,設(shè),2018年至2022年數(shù)據(jù)統(tǒng)計(jì)表如下:年份2018年2019年2020年2021年2022年年份代碼12345云計(jì)算市場規(guī)模720712005100.851.31.852.32.7若根據(jù)上表得到回歸方程,則該科技公司2025年云計(jì)算市場規(guī)模約為()A. B. C. D.〖答案〗B〖解析〗,,將代入回歸方程,可得,即,所以關(guān)于的回歸方程為,2025年即當(dāng)時,,此時.故:B.5.若,,,則下列關(guān)系正確的是()A. B. C. D.〖答案〗A〖解析〗因?yàn)橹笖?shù)函數(shù)為R上的單調(diào)遞減函數(shù),故可得,,故,故選:A.6.已知函數(shù),存在最小值,則實(shí)數(shù)的取值范圍為()A. B. C. D.〖答案〗A〖解析〗,令得且時,時,時,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,又,又時,或或,所以其圖象如下:由圖像,時存在最小值,必有,故選:7.已知當(dāng)時,.根據(jù)以上信息,若對任意,有,則()A. B. C. D.〖答案〗B〖解析〗由題知,,同理得,因?yàn)?,有,所?故選:B.8.已知函數(shù),,(其中為自然對數(shù)的底數(shù)).若存在實(shí)數(shù),使得,則實(shí)數(shù)的取值范圍為()A. B. C. D.〖答案〗C〖解析〗因?yàn)榇嬖趯?shí)數(shù),使得,所以,即,令,則,函數(shù)在R上單調(diào)遞增,,即的最小值,令,,當(dāng)時,,當(dāng)時,,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,時,函數(shù)取得極小值即最小值,,.故選:C.二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對得5分,部分選對得2分,有項(xiàng)選錯得0分.9.若函數(shù)的單調(diào)遞增區(qū)間為,則可能是()A. B.C. D.〖答案〗BD〖解析〗A選項(xiàng),的定義域?yàn)?,故單調(diào)遞增區(qū)間不可能為,A錯誤;B選項(xiàng),定義域?yàn)椋?,令,解得,所以單調(diào)遞增區(qū)間為,B正確;C選項(xiàng),定義域?yàn)?,,令,解得或,所以單調(diào)遞增區(qū)間為,,C錯誤;D選項(xiàng),定義域?yàn)?,,令,解得,故單?dú)遞增區(qū)間為,D正確.故選:BD.10.某同學(xué)在高二年級所有檢測中語文和數(shù)學(xué)成績均服從正態(tài)分布,記語文成績?yōu)?,?shù)學(xué)成績?yōu)椋?,,則下列結(jié)論正確的是()A. B.C. D.〖答案〗ACD〖解析〗對于A,因?yàn)椋?,所以A正確,對于B,因?yàn)?,所以,所以B錯誤,對于C,因?yàn)椋?,所以C正確,對于D,因?yàn)椋?,所以,所以D正確,故選:ACD.11.若展開式中二項(xiàng)式系數(shù)和為64,下列結(jié)論正確的是()A. B.展開式中第3項(xiàng)為C.展開式中常數(shù)項(xiàng)為60 D.展開式中各項(xiàng)系數(shù)之和為729〖答案〗AD〖解析〗對于A,因?yàn)檎归_式中二項(xiàng)式系數(shù)和為64,所以,得,所以A正確,對于B,由選項(xiàng)A可知二項(xiàng)式為,則其展開式的通項(xiàng)公式為,所以展開式中第3項(xiàng)為,所以B錯誤,對于C,令,得,所以展開式中常數(shù)項(xiàng)為,所以C錯誤,對于D,令,則,所以展開式中各項(xiàng)系數(shù)之和為729,所以D正確,故選:AD.12.在長方體中,,,為棱上任意一點(diǎn),則下列結(jié)論正確的是()A.長方體表面積的最大值為6B.長方體外接球表面積的最小值為C.到平面的距離的最大值為D.三棱錐體積的最大值為〖答案〗AD〖解析〗對于A,設(shè),(),則該長方體表面積為,所以當(dāng)時,S取得最大值6,即長方體表面積的最大值為6,所以A正確,對于B,設(shè),(),設(shè)長方體外接球半徑為,則,所以當(dāng)時,上式取得最小值3,此時的最小值為,所以長方體外接球表面積的最小值為,所以B錯誤,對于C,設(shè)點(diǎn)到平面的距離為,即點(diǎn)到平面的距離為,因?yàn)椋?,,所以,設(shè),(),則所以,因?yàn)?,所以,所以到平面的距離無最大值,所以C錯誤,對于D,,當(dāng)且僅當(dāng),即時取等號,所以三棱錐體積的最大值為,所以D正確,故選:AD.三、填空題:本題共4小題,每小題5分,共20分.請把〖答案〗直接填寫在答題卡相應(yīng)位置上.13.已知,則的值為______.〖答案〗〖解析〗因?yàn)椋?,即,所以,所以,所?故〖答案〗為:.14.如圖,直三棱柱所有棱長均為2,M為的中點(diǎn),則異面直線與所成角的余弦值為______.〖答案〗〖解析〗取的中點(diǎn),連接;因?yàn)榉謩e為的中點(diǎn),所以且,或其補(bǔ)角是異面直線與所成角;因?yàn)橹比庵欣忾L均為2,所以,,;在中,.所以異面直線與所成角的余弦值為.故〖答案〗為:.15.某同學(xué)連續(xù)兩天在學(xué)校信息圖文中心2樓和3樓進(jìn)行拓展閱讀,第一天等可能地從信息圖文中心2樓和3樓中選擇一層樓進(jìn)行閱讀.如果第一天去2樓的條件下第二天還在2樓閱讀的概率為0.7;第一天去3樓的條件下第二天去2樓閱讀的概率為0.8,該同學(xué)第二天去3樓閱讀的概率為______.〖答案〗〖解析〗設(shè)事件“第天去2樓閱讀”,事件“第天去3樓閱讀”,則,,;所以.故〖答案〗為:.16.已知定義在上的函數(shù)滿足,且為偶函數(shù),則______.〖答案〗〖解析〗為偶函數(shù),,令,則,,;又,,即,,是周期為的周期函數(shù),,由得:,即,又,,.故〖答案〗為:.四、解答題:本題共6小題,共70分.請?jiān)诖痤}卡指定區(qū)域內(nèi)作答.解答時應(yīng)寫出文字說明、證明過程或演算步驟.17.已知函數(shù)且.(1)判斷函數(shù)的奇偶性,并說明理由;(2)若,當(dāng)時,求的值域.解:(1)為奇函數(shù),理由如下:由得:,的定義域?yàn)椋唬瑸槎x在上的奇函數(shù).(2),,;方法一:當(dāng)時,,,,,即的值域?yàn)?;方法二:令,在上單調(diào)遞減,,,,,即的值域?yàn)?18.如圖,三棱錐中,平面,線段的中點(diǎn)為,,且.(1)證明:平面;(2)若,,求二面角的余弦值.(1)證明:法一:在中,,線段的中點(diǎn)為,所以,因?yàn)槠矫妫矫?,所以.因?yàn)槠矫妫矫?,,所以平面.法二:如圖,以為基底建立空間直角坐標(biāo)系.因?yàn)?,,線段的中點(diǎn)為,所以,所以.設(shè)平面的一個法向量為,由,得到,解得.令,則,所以.易知,平面的一個法向量為,設(shè)平面的一個法向量為,則由,得到,取,所以.又因?yàn)?,所以,所以平面?)解:在中,過點(diǎn)A作,垂足為,連接,因?yàn)槠矫?,平面,所?又因?yàn)?,平面,平面,,所以平面,又因?yàn)槠矫妫裕忠驗(yàn)?,平面,平面,,所以平面,所以,所以為二面角的平面角,在中,,,所以,.同理,在中,,所以.所以二面角的余弦值.法二,設(shè)二面角的平面角為,則為銳角,則,所以二面角的余弦值.19.一盒子中放有個大小相同的小球,其中個紅球,個白球.現(xiàn)從中抽取兩次,一次抽取兩個球,若第一次抽出后不放回.(1)求第一次抽到兩個紅球的條件下,第二次抽到兩個白球的概率;(2)若一次抽出的兩個球同色即中獎,求中獎次數(shù)的概率分布和數(shù)學(xué)期望.解:(1)記“第一次抽到兩個紅球”為事件A,“第二次抽到兩個白球”為事件,則,,.(2)由題意知:所有可能的取值為,;;;的概率分布為:數(shù)學(xué)期望.20.已知函數(shù),其中.(1)當(dāng)時,求函數(shù)的極小值;(2)若在處的切線與圖象也相切,求實(shí)數(shù)的值.解:(1)當(dāng)時,,其中所以,令,解得.列表如下:極小值所以函數(shù)的極小值為.(2)因?yàn)椋?,所以.因?yàn)椋栽谔幍那芯€方程為.因?yàn)榕c圖像相切,所以有兩個相等的實(shí)根,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒教師的教學(xué)故事六篇
- 全國新型電力系統(tǒng)(配電自動化)職業(yè)技能競賽參考試題庫500題(含答案)
- 《預(yù)防未成年人犯罪法》知識考試題庫80題(含答案)
- 大學(xué)衛(wèi)生學(xué)課件
- 汽車租賃合同詳細(xì)條款正規(guī)范本
- 滄州房屋租賃合同
- 棉花運(yùn)輸合同范本
- 標(biāo)準(zhǔn)的員工勞動合同
- 大數(shù)據(jù)分析平臺建設(shè)及運(yùn)營合同
- 海外房產(chǎn)銷售代理合同范本
- 護(hù)理人文知識培訓(xùn)課件
- 建筑工程施工安全管理課件
- 2025年春新人教版數(shù)學(xué)七年級下冊教學(xué)課件 7.2.3 平行線的性質(zhì)(第1課時)
- 安徽省合肥市2025年高三第一次教學(xué)質(zhì)量檢測地理試題(含答案)
- 2025年新合同管理工作計(jì)劃
- 統(tǒng)編版八年級下冊語文第三單元名著導(dǎo)讀《經(jīng)典常談》閱讀指導(dǎo) 學(xué)案(含練習(xí)題及答案)
- 風(fēng)光儲儲能項(xiàng)目PCS艙、電池艙吊裝方案
- TTJSFB 002-2024 綠色融資租賃項(xiàng)目評價指南
- 浙江省杭州市2023年中考一模語文試題及答案
- 上海市楊浦區(qū)2022屆初三中考二模英語試卷+答案
- 高中英語原版小說整書閱讀指導(dǎo)《奇跡男孩》(wonder)-Part one 講義
評論
0/150
提交評論