工程數(shù)學(xué)(本)形成性考核作業(yè)5_第1頁
工程數(shù)學(xué)(本)形成性考核作業(yè)5_第2頁
工程數(shù)學(xué)(本)形成性考核作業(yè)5_第3頁
工程數(shù)學(xué)(本)形成性考核作業(yè)5_第4頁
工程數(shù)學(xué)(本)形成性考核作業(yè)5_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

未知驅(qū)動(dòng)探索,專注成就專業(yè)工程數(shù)學(xué)(本)形成性考核作業(yè)5一、題目背景這是工程數(shù)學(xué)(本)形成性考核作業(yè)的第5個(gè)題目,本次題目主要涉及數(shù)列和級(jí)數(shù)的性質(zhì)以及求和運(yùn)算。二、題目要求請(qǐng)回答以下問題:已知數(shù)列$\\{a_n\\}$滿足a1=1,且對(duì)任意正整數(shù)n,有$a_{n+1}=\\frac{a_n^2+1}{2}$求級(jí)數(shù)$\\sum_{n=1}^{\\infty}\\frac{1}{2^n}$的和。已知等差數(shù)列$\\{a_n\\}$和$\\{b_n\\}$滿足a1=3,an+1=2a三、問題解答1.求證數(shù)列$\\{a_n\\}$是遞增數(shù)列為了證明數(shù)列$\\{a_n\\}$是遞增數(shù)列,我們可以采用歸納法進(jìn)行證明。首先,我們已知a1=1,也就是數(shù)列的首項(xiàng)是1。接下來,我們需要證明對(duì)于任意正整數(shù)n基礎(chǔ)步驟:當(dāng)n=1時(shí),歸納假設(shè):假設(shè)當(dāng)n=k時(shí),ak+1>歸納步驟:當(dāng)n=k+1假設(shè)ak+1>ak,那么(a綜上所述,由歸納法可知數(shù)列$\\{a_n\\}$是遞增數(shù)列。2.求級(jí)數(shù)$\\sum_{n=1}^{\\infty}\\frac{1}{2^n}$的和要求級(jí)數(shù)$\\sum_{n=1}^{\\infty}\\frac{1}{2^n}$的和,可以使用等比數(shù)列求和公式。設(shè)等比數(shù)列的首項(xiàng)為a=1,公比為$$S=\\frac{a}{1-r}=\\frac{1}{1-\\frac{1}{2}}=\\frac{1}{\\frac{1}{2}}=2$$因此,級(jí)數(shù)$\\sum_{n=1}^{\\infty}\\frac{1}{2^n}$的和為2。3.求證$\\{a_n\\}$和$\\{b_n\\}$是等差數(shù)列為了證明$\\{a_n\\}$和$\\{b_n\\}$是等差數(shù)列,我們需要證明對(duì)于任意正整數(shù)n,an+1?an證明$\\{a_n\\}$是等差數(shù)列:根據(jù)題目已知條件,a1=3,且an+$a_{n+1}-a_n=2a_n-1-a_n=a_n-1=2(a_{n-1}-1)-1=2(a_{n-1}-2)=\\ldots=2(a_1-2^n)=-2^n+3$我們可以看到an+1?an的值與n有關(guān),但是與an的值無關(guān)。即證明$\\{b_n\\}$是等差數(shù)列:根據(jù)題目已知條件,b1=2,且bn+$b_{n+1}-b_n=(1+2b_n)-b_n=1+b_n=1+2(b_{n-1}+1)=\\ldots=1+2^{n-1}(b_1-1)=1+2^{n-1}(2-1)=2^n$我們可以看到bn+1?bn的值與n有關(guān),但是與bn的值無關(guān)。即綜上所述,$\\{a_n\\}$和$\\{b_n\\}$都不是等差數(shù)列。四、總結(jié)本次工程數(shù)學(xué)(本)形成性考核作業(yè)的題目涉及數(shù)列和級(jí)數(shù)的性質(zhì)以及求和運(yùn)算。通過解答題目,我們學(xué)習(xí)到了數(shù)列的遞增性質(zhì)的證明方法,以及等比級(jí)數(shù)求和的公式。同時(shí),我們也了解到了不滿足等差性質(zhì)的數(shù)列。希望通過本次作業(yè)的解答,大家對(duì)于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論