![七年級(jí)下冊(cè)數(shù)學(xué)期末壓軸題試卷含答案_第1頁](http://file4.renrendoc.com/view/f082f1f8b7e782c2084e8e2dad0219a0/f082f1f8b7e782c2084e8e2dad0219a01.gif)
![七年級(jí)下冊(cè)數(shù)學(xué)期末壓軸題試卷含答案_第2頁](http://file4.renrendoc.com/view/f082f1f8b7e782c2084e8e2dad0219a0/f082f1f8b7e782c2084e8e2dad0219a02.gif)
![七年級(jí)下冊(cè)數(shù)學(xué)期末壓軸題試卷含答案_第3頁](http://file4.renrendoc.com/view/f082f1f8b7e782c2084e8e2dad0219a0/f082f1f8b7e782c2084e8e2dad0219a03.gif)
![七年級(jí)下冊(cè)數(shù)學(xué)期末壓軸題試卷含答案_第4頁](http://file4.renrendoc.com/view/f082f1f8b7e782c2084e8e2dad0219a0/f082f1f8b7e782c2084e8e2dad0219a04.gif)
![七年級(jí)下冊(cè)數(shù)學(xué)期末壓軸題試卷含答案_第5頁](http://file4.renrendoc.com/view/f082f1f8b7e782c2084e8e2dad0219a0/f082f1f8b7e782c2084e8e2dad0219a05.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.如圖:在四邊形ABCD中,A、B、C、D四個(gè)點(diǎn)的坐標(biāo)分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個(gè)單位,再向左平移2個(gè)單位,平移后的四邊形是A'B'C′D'(1)請(qǐng)畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點(diǎn)的坐標(biāo).(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo).(3)求四邊形ABCD的面積.2.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長(zhǎng),現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請(qǐng)直接寫出四邊形的周長(zhǎng).(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫出旋轉(zhuǎn)的時(shí)間.3.已知,如圖:射線分別與直線、相交于、兩點(diǎn),的角平分線與直線相交于點(diǎn),射線交于點(diǎn),設(shè),且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點(diǎn)是射線上任意一點(diǎn),且,試找出與之間存在一個(gè)什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點(diǎn)逆時(shí)針方向旋轉(zhuǎn)(如圖)分別與、相交于點(diǎn)和點(diǎn)時(shí),作的角平分線與射線相交于點(diǎn),問在旋轉(zhuǎn)的過程中的值變不變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說明理由.4.已知AB∥CD,∠ABE與∠CDE的角分線相交于點(diǎn)F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請(qǐng)直接寫出∠M與∠BED之間的數(shù)量關(guān)系5.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點(diǎn)在的上方,問,,之間有何數(shù)量關(guān)系?請(qǐng)說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).6.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點(diǎn)E是在平行線AB,CD內(nèi),AD右側(cè)的任意一點(diǎn),探究∠BAE,∠CDE,∠E之間的數(shù)量關(guān)系,并證明.(3)如圖3,若∠C=90°,且點(diǎn)E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內(nèi)部,且交BC于點(diǎn)M,交AE延長(zhǎng)線于點(diǎn)F,∠AED+∠AEC=180°,①直接寫出∠AED與∠FDC的數(shù)量關(guān)系:.②點(diǎn)P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補(bǔ)全圖形后,求∠EPD的度數(shù)7.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因?yàn)椋?,因?yàn)?,所?(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運(yùn)算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運(yùn)算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.8.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點(diǎn)每向右移動(dòng)______位,其算術(shù)平方根的小數(shù)點(diǎn)向______移動(dòng)______位.(2)已知,,則_____;______.(3),,,……小數(shù)點(diǎn)的變化規(guī)律是_______________________.(4)已知,,則______.9.閱讀材料:求值:,解答:設(shè),將等式兩邊同時(shí)乘2得:,將得:,即.請(qǐng)你類比此方法計(jì)算:.其中n為正整數(shù)10.[閱讀材料]∵,即,∴,∴的整數(shù)部分為1,∴的小數(shù)部分為[解決問題](1)填空:的小數(shù)部分是__________;(2)已知是的整數(shù)部分,是的小數(shù)部分,求代數(shù)式的平方根為______.11.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計(jì)算:(1).(2)計(jì)算:(3)計(jì)算:12.三個(gè)自然數(shù)x、y、z組成一個(gè)有序數(shù)組,如果滿足,那么我們稱數(shù)組為“蹦蹦數(shù)組”.例如:數(shù)組中,故是“蹦蹦數(shù)組”;數(shù)組中,故不是“蹦蹦數(shù)組”.(1)分別判斷數(shù)組和是否為“蹦蹦數(shù)組”;(2)s和t均是三位數(shù)的自然數(shù),其中s的十位數(shù)字是3,個(gè)位數(shù)字是2,t的百位數(shù)字是2,十位數(shù)字是5,且.是否存在一個(gè)整數(shù)b,使得數(shù)組為“蹦蹦數(shù)組”.若存在,求出b的值;若不存在,請(qǐng)說明理由;(3)有一個(gè)三位數(shù)的自然數(shù),百位數(shù)字是1,十位數(shù)字是p,個(gè)位數(shù)字是q,若數(shù)組為“蹦蹦數(shù)組”,且該三位數(shù)是7的倍數(shù),求這個(gè)三位數(shù).13.如圖①,在平面直角坐標(biāo)系中,點(diǎn),,其中,是16的算術(shù)平方根,,線段由線段平移所得,并且點(diǎn)與點(diǎn)A對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng).(1)點(diǎn)A的坐標(biāo)為;點(diǎn)的坐標(biāo)為;點(diǎn)的坐標(biāo)為;(2)如圖②,是線段上不同于的任意一點(diǎn),求證:;(3)如圖③,若點(diǎn)滿足,點(diǎn)是線段OA上一動(dòng)點(diǎn)(與點(diǎn)、A不重合),連交于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過程中,是否總成立?請(qǐng)說明理由.14.如圖1,已知直線CD∥EF,點(diǎn)A,B分別在直線CD與EF上.P為兩平行線間一點(diǎn).(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請(qǐng)你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)15.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到的對(duì)應(yīng)點(diǎn).連接.(1)寫出點(diǎn)的坐標(biāo)并求出四邊形的面積.(2)在軸上是否存在一點(diǎn),使得的面積是面積的2倍?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.(3)若點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),連接,當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與的數(shù)量關(guān)系.16.我們定義,關(guān)于同一個(gè)未知數(shù)的不等式和,若的解都是的解,則稱與存在“雅含”關(guān)系,且不等式稱為不等式的“子式”.如,,滿足的解都是的解,所以與存在“雅含”關(guān)系,是的“子式”.(1)若關(guān)于的不等式,,請(qǐng)問與是否存在“雅含”關(guān)系,若存在,請(qǐng)說明誰是誰的“子式”;(2)已知關(guān)于的不等式,,若與存在“雅含”關(guān)系,且是的“子式”,求的取值范圍;(3)已知,,,,且為整數(shù),關(guān)于的不等式,,請(qǐng)分析是否存在,使得與存在“雅含”關(guān)系,且是的“子式”,若存在,請(qǐng)求出的值,若不存在,請(qǐng)說明理由.17.如圖,在下面直角坐標(biāo)系中,已知,,三點(diǎn),其中,,滿足關(guān)系式.(1)求,,的值;(2)如果在第二象限內(nèi)有一點(diǎn),請(qǐng)用含的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積與三角形的面積相等?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.18.如圖,點(diǎn)A(1,n),B(n,1),我們定義:將點(diǎn)A向下平移1個(gè)單位,再向右平移1個(gè)單位,同時(shí)點(diǎn)B向上平移1個(gè)單位,再向左平移1個(gè)單位稱為一次操作,此時(shí)平移后的兩點(diǎn)記為A1,B1,t次操作后兩點(diǎn)記為At,Bt.(1)直接寫出A1,B1,At,Bt的坐標(biāo)(用含n、t的式子表示);(2)以下判斷正確的是.A.經(jīng)過n次操作,點(diǎn)A,點(diǎn)B位置互換B.經(jīng)過(n﹣1)次操作,點(diǎn)A,點(diǎn)B位置互換C.經(jīng)過2n次操作,點(diǎn)A,點(diǎn)B位置互換D.不管幾次操作,點(diǎn)A,點(diǎn)B位置都不可能互換(3)t為何值時(shí),At,B兩點(diǎn)位置距離最近?19.?dāng)?shù)學(xué)活動(dòng)課上,小新和小葵各自拿著不同的長(zhǎng)方形紙片在做數(shù)學(xué)問題探究.(1)小新經(jīng)過測(cè)量和計(jì)算得到長(zhǎng)方形紙片的長(zhǎng)寬之比為3:2,面積為30,請(qǐng)求出該長(zhǎng)方形紙片的長(zhǎng)和寬;(2)小葵在長(zhǎng)方形內(nèi)畫出邊長(zhǎng)為a,b的兩個(gè)正方形(如圖所示),其中小正方形的一條邊在大正方形的一條邊上,她經(jīng)過測(cè)量和計(jì)算得到長(zhǎng)方形紙片的周長(zhǎng)為50,陰影部分兩個(gè)長(zhǎng)方形的周長(zhǎng)之和為30,由此她判斷大正方形的面積為100,間小葵的判斷正確嗎?請(qǐng)說明理由.20.如圖,和的度數(shù)滿足方程組,且,.(1)用解方程的方法求和的度數(shù);(2)求的度數(shù).21.閱讀下列材料,解答下面的問題:我們知道方程有無數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其正整數(shù)解.例:由,得:,(x、y為正整數(shù))∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為問題:(1)請(qǐng)你寫出方程的一組正整數(shù)解:.(2)若為自然數(shù),則滿足條件的x值為.(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購(gòu)買方案?22.為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時(shí),水費(fèi)按a元/米3收費(fèi);每戶每月用水量超過6米3時(shí),不超過的部分每立方米仍按a元收費(fèi),超過的部分按c元/米3收費(fèi),該市某用戶今年3、4月份的用水量和水費(fèi)如下表所示:月份用水量(m3)收費(fèi)(元)357.54927(1)求a、c的值,并寫出每月用水量不超過6米3和超過6米3時(shí),水費(fèi)與用水量之間的關(guān)系式;(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi).23.對(duì)于不為0的一位數(shù)和一個(gè)兩位數(shù),將數(shù)放置于兩位數(shù)之前,或者將數(shù)放置于兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字之間就可以得到兩個(gè)新的三位數(shù),將較大三位數(shù)減去較小三位數(shù)的差與15的商記為.例如:當(dāng),時(shí),可以得到168,618.較大三位數(shù)減去較小三位數(shù)的差為,而,所以.(1)計(jì)算:.(2)若是一位數(shù),是兩位數(shù),的十位數(shù)字為(,為自然數(shù)),個(gè)位數(shù)字為8,當(dāng)時(shí),求出所有可能的,的值.24.用如圖1的長(zhǎng)方形和正方形鐵片(長(zhǎng)方形的寬與正方形的邊長(zhǎng)相等)作側(cè)面和底面、做成如圖2的豎式和橫式的兩種無蓋的長(zhǎng)方體容器,(1)現(xiàn)有長(zhǎng)方形鐵片2014張,正方形鐵片1176張,如果將兩種鐵片剛好全部用完,那么可加工成豎式和橫式長(zhǎng)方體容器各有幾個(gè)?(2)現(xiàn)有長(zhǎng)方形鐵片a張,正方形鐵片b張,如果加工這兩種容器若干個(gè),恰好將兩種鐵片剛好全部用完.則的值可能是()A.2019B.2020C.2021D.2022(3)給長(zhǎng)方體容器加蓋可以加工成鐵盒.先工廠倉(cāng)庫(kù)有35張鐵皮可以裁剪成長(zhǎng)方形和正方形鐵片,用來加工鐵盒,已知1張鐵皮可裁剪出3張長(zhǎng)方形鐵片或4張正方形鐵片,也可以裁剪出1張長(zhǎng)方形鐵片和2張正方形鐵片.請(qǐng)問怎樣充分利用這35張鐵皮,最多可以加工成多少個(gè)鐵盒?25.如圖,在平面直角坐標(biāo)系中,已知兩點(diǎn),且a、b滿足點(diǎn)在射線AO上(不與原點(diǎn)重合).將線段AB平移到DC,點(diǎn)D與點(diǎn)A對(duì)應(yīng),點(diǎn)C與點(diǎn)B對(duì)應(yīng),連接BC,直線AD交y軸于點(diǎn)E.請(qǐng)回答下列問題:(1)求A、B兩點(diǎn)的坐標(biāo);(2)設(shè)三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設(shè),請(qǐng)給出,滿足的數(shù)量關(guān)系式,并說明理由.26.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)榻獾茫驗(yàn)閠為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請(qǐng)你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請(qǐng)直接寫出答案.27.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉(zhuǎn)化為不等式組求解,如;方法二,利用不等式的性質(zhì)直接求解,雙連不等式的左、中、右同時(shí)減去1,得,然后同時(shí)除以2,得.解決下列問題:(1)請(qǐng)你寫一個(gè)雙連不等式并將它轉(zhuǎn)化為不等式組;(2)利用不等式的性質(zhì)解雙連不等式;(3)已知,求的整數(shù)值.28.對(duì)、定義了一種新運(yùn)算T,規(guī)定(其中,均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:,已知,.(1)求,的值;(2)求.(3)若關(guān)于的不等式組恰好有4個(gè)整數(shù)解,求的取值范圍.29.定義:如果一個(gè)兩位數(shù)a的十位數(shù)字為m,個(gè)位數(shù)字為n,且、、,那么這個(gè)兩位數(shù)叫做“互異數(shù)”.將一個(gè)“互異數(shù)”的十位數(shù)字與個(gè)位數(shù)字對(duì)調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對(duì)調(diào)個(gè)位數(shù)字與十位數(shù)字得到新兩位數(shù)41,新兩位數(shù)與原兩位數(shù)的和為,和與11的商為,所以.根據(jù)以上定義,解答下列問題:(1)填空:①下列兩位數(shù):20,21,22中,“互異數(shù)”為________;②計(jì)算:________;________;(m、n分別為一個(gè)兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字)(2)如果一個(gè)“互異數(shù)”b的十位數(shù)字是x,個(gè)位數(shù)字是y,且;另一個(gè)“互異數(shù)”c的十位數(shù)字是,個(gè)位數(shù)字是,且,請(qǐng)求出“互異數(shù)”b和c;(3)如果一個(gè)“互異數(shù)”d的十位數(shù)字是x,個(gè)位數(shù)字是,另一個(gè)“互異數(shù)”e的十位數(shù)字是,個(gè)位數(shù)字是3,且滿足,請(qǐng)直接寫出滿足條件的所有x的值________;(4)如果一個(gè)“互異數(shù)”f的十位數(shù)字是,個(gè)位數(shù)字是x,且滿足的互異數(shù)有且僅有3個(gè),則t的取值范圍________.30.如圖,在平面直角坐標(biāo)系中,,CD//x軸,CD=AB.(1)求點(diǎn)D的坐標(biāo):(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點(diǎn)P,使△PAB=四邊形OCDB;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對(duì)應(yīng)點(diǎn)的坐標(biāo)進(jìn)而得出答案;(2)利用平移規(guī)律進(jìn)而得出對(duì)應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律:向上平移1個(gè)單位,縱坐標(biāo)加1;向左平移2個(gè)單位,橫坐標(biāo)減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進(jìn)而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點(diǎn)睛】此題主要考查了平移變換以及坐標(biāo)系內(nèi)四邊形面積求法,正確得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵.2.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時(shí),②當(dāng)BC∥EF時(shí),③當(dāng)BC∥DF時(shí),分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長(zhǎng)為45cm;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時(shí),如圖5,此時(shí)AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時(shí),如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時(shí),如圖7,延長(zhǎng)BC交MN于K,延長(zhǎng)DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的時(shí)間為10s或30s或40s時(shí),線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.3.(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計(jì)算α和β的值,再根據(jù)內(nèi)錯(cuò)角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯(cuò)角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長(zhǎng)線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長(zhǎng)線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯(cuò)角相等證平行,平行線同旁內(nèi)角互補(bǔ)等知識(shí)是解題的關(guān)鍵.4.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個(gè)角的角平分線相交于點(diǎn),,,,,,;(3)由(2)結(jié)論可得,,,則.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ)的性質(zhì).5.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點(diǎn)P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點(diǎn)作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點(diǎn)睛】本題主要考查平行線的性質(zhì)與判定,靈活運(yùn)用平行線的性質(zhì)與判定是解題的關(guān)鍵.6.(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據(jù)平行線的性質(zhì)及判定可得結(jié)論;(2)過點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)得AB∥CD∥EF,然后由兩直線平行內(nèi)錯(cuò)角相等可得結(jié)論;(3)①根據(jù)∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導(dǎo)出角的關(guān)系;②先根據(jù)∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據(jù)∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數(shù).【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過點(diǎn)E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì),角平分線的性質(zhì)等知識(shí)點(diǎn)是解題的關(guān)鍵.7.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運(yùn)算性質(zhì),g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運(yùn)算性質(zhì),先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點(diǎn)睛】本題考查有理數(shù)的乘方運(yùn)算,新定義;能夠?qū)⑿露x的運(yùn)算轉(zhuǎn)化為有理數(shù)的乘方運(yùn)算是解題的關(guān)鍵.8.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點(diǎn)向右(左)移三位,其立方根的小數(shù)點(diǎn)向右(左)移動(dòng)一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計(jì)算即可得到結(jié)果;(3)歸納總結(jié)得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計(jì)算即可得到結(jié)果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點(diǎn)每向右移動(dòng)兩位,其算術(shù)平方根的小數(shù)點(diǎn)向右移動(dòng)一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點(diǎn)的變化規(guī)律是:被開方數(shù)的小數(shù)點(diǎn)向右(左)移三位,其立方根的小數(shù)點(diǎn)向右(左)移動(dòng)一位;(4)∵,,∴,∴,∴y=-0.01.【點(diǎn)睛】此題考查了立方根,以及算術(shù)平方根,弄清題中的規(guī)律是解本題的關(guān)鍵.9.(1);(2).【解析】【分析】設(shè),兩邊乘以2后得到關(guān)系式,與已知等式相減,變形即可求出所求式子的值;同理即可得到所求式子的值.【詳解】解:設(shè),將等式兩邊同時(shí)乘2得:,將下式減去上式得:,即,則;設(shè),兩邊同時(shí)乘3得:,得:,即,則.【點(diǎn)睛】本題考查了規(guī)律型:數(shù)字的變化類,有理數(shù)的混合運(yùn)算,解題的關(guān)鍵是明確題意,運(yùn)用題目中的解題方法,運(yùn)用類比的數(shù)學(xué)思想解答問題.10.(1);(2)±3.【分析】(1)由于4<7<9,可求的整數(shù)部分,進(jìn)一步得出的小數(shù)部分;(2)先求出的整數(shù)部分和小數(shù)部分,再代入代數(shù)式進(jìn)行計(jì)算即可.【詳解】解:(1)∵4<7<9,∴,即,∴,∴的整數(shù)部分為2,∴的小數(shù)部分為;(2)∵是的整數(shù)部分,是的小數(shù)部分,9<10<16,∴,即,∴,∴的整數(shù)部分為3,的小數(shù)部分為,即有,,∴9的平方根為±3.∴的平方根為±3.【點(diǎn)睛】本題考查了估算無理數(shù)的大?。豪猛耆椒綌?shù)和算術(shù)平方根對(duì)無理數(shù)的大小進(jìn)行估算.11.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點(diǎn)睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.12.(1)(437,307,177)是“蹦蹦數(shù)組”,(601,473,346)不是“蹦蹦數(shù)組”;(2)存在,數(shù)組為(532,395,258);(3)這個(gè)三位數(shù)是147.【分析】(1)由“蹦蹦數(shù)組”的定義進(jìn)行驗(yàn)證即可;(2)設(shè)s為,t為,則,先后求得n、s的值,根據(jù)“蹦蹦數(shù)組”的定義即可求解;(3)設(shè)這個(gè)數(shù)為,則,由和都是0到9的正整數(shù),列舉法即可得出這個(gè)三位數(shù).【詳解】解:(1)數(shù)組(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦數(shù)組”;數(shù)組(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦數(shù)組”;(2)設(shè)s為,t為,則,∵m、n為整數(shù),∴,則t為258,∴s為532,而,則b為532-137=395,驗(yàn)算:532-395=395-258=137,故數(shù)組為(532,395,258);(3)根據(jù)題意,設(shè)這個(gè)數(shù)為,則,∴,而和都是0到9的正整數(shù),討論:p12345q13579111123135147159而是7的倍數(shù)的三位數(shù)只有147,且1-4=4-7=-3,數(shù)組(1,4,7)為“蹦蹦數(shù)組”,故這個(gè)三位數(shù)是147.【點(diǎn)睛】本題是一道新定義題目,解決的關(guān)鍵是能夠根據(jù)定義,通過列舉法找到合適的數(shù),進(jìn)而求解.13.(1),,;(2)證明見解析;(3)成立,理由見解析【分析】(1)根據(jù)算術(shù)平方根、立方根得、;再根據(jù)直角坐標(biāo)系、平移的性質(zhì)分析,即可得到答案;(2)根據(jù)平移的性質(zhì),得;根據(jù)平行線性質(zhì),分別推導(dǎo)得,,從而完成證明;(3)結(jié)合題意,根據(jù)平行線的性質(zhì),推導(dǎo)得、;結(jié)合(2)的結(jié)論,通過計(jì)算即可完成證明.【詳解】(1)連接∵是16的算術(shù)平方根∴∴∴∵∴∴∴∵線段由線段平移所得,并且點(diǎn)與點(diǎn)A對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng)∴,∴故答案為:,,;(2)∵線段由線段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的結(jié)論得:,∵,∴∴∵∴∴∴在點(diǎn)運(yùn)動(dòng)的過程中,總成立.【點(diǎn)睛】本題考查了算術(shù)平方根、立方根、平行線、平移、直角坐標(biāo)系的知識(shí);解題的關(guān)鍵是熟練掌握直角坐標(biāo)系、平移、平行線的性質(zhì),從而完成求解.14.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯(cuò)角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯(cuò)角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點(diǎn)在于過拐點(diǎn)作平行線.15.(1)點(diǎn),點(diǎn);12;(2)存在,點(diǎn)的坐標(biāo)為和;(3)∠OFC=∠FOB-∠FCD,見解析.【解析】【分析】(1)根據(jù)點(diǎn)平移的規(guī)律易得點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(6,2);(2)設(shè)點(diǎn)E的坐標(biāo)為(x,0),根據(jù)△DEC的面積是△DEB面積的2倍和三角形面積公式得到,解得x=1或x=7,然后寫出點(diǎn)E的坐標(biāo);(3)分類討論:當(dāng)點(diǎn)F在線段BD上,作FM∥AB,根據(jù)平行線的性質(zhì)由MF∥AB得∠2=∠FOB,由CD∥AB得到CD∥MF,則∠1=∠FCD,所以∠OFC=∠FOB+∠FCD;同樣得到當(dāng)點(diǎn)F在線段DB的延長(zhǎng)線上,∠OFC=∠FCD-∠FOB;當(dāng)點(diǎn)F在線段BD的延長(zhǎng)線上,得到∠OFC=∠FOB-∠FCD.【詳解】解:(1)∵點(diǎn)A,B的坐標(biāo)分別是(-2,0),(4,0),現(xiàn)同時(shí)將點(diǎn)A、B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度得到A,B的對(duì)應(yīng)點(diǎn)C,D,∴點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(6,2);四邊形ABDC的面積=2×(4+2)=12;(2)存在.設(shè)點(diǎn)E的坐標(biāo)為(x,0),∵△DEC的面積是△DEB面積的2倍,,解得x=1或x=7,∴點(diǎn)E的坐標(biāo)為(1,0)和(7,0);(3)當(dāng)點(diǎn)F在線段BD上,作FM∥AB,如圖1,∵M(jìn)F∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;當(dāng)點(diǎn)F在線段DB的延長(zhǎng)線上,作FN∥AB,如圖2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;同樣得到當(dāng)點(diǎn)F在線段BD的延長(zhǎng)線上,得到∠OFC=∠FOB-∠FCD.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)得到線段的長(zhǎng)和線段與坐標(biāo)軸的關(guān)系.也考查了平行線的性質(zhì)和分類討論的思想.16.(1)A與B存在“雅含”關(guān)系,B是A的“子式”;(2);(3)存在,.【分析】(1)根據(jù)“雅含”關(guān)系的定義即可判斷;(2)先求出解集,根據(jù)“雅含”關(guān)系的定義得出,解不等式即可;(3)首先解關(guān)于的方程組即可求得的值,然后根據(jù),,且為整數(shù)即可得到一個(gè)關(guān)于的范圍,從而求得的整數(shù)值.【詳解】解:(1)不等式A:x+2>1的解集為,∵∴A與B存在“雅含”關(guān)系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,∵與存在“雅含”關(guān)系,且是的“子式”,∴,解得:,(3)存在;由解得:,∵,,即:,解得:,∵為整數(shù),∴的值為,解不等式得:,解不等式得:,∵與存在“雅含”關(guān)系,且是的“子式”,∴不等式的解集為:,∴,且,解得:,∴.【點(diǎn)睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小無解.17.(1)a=2,b=3,c=4;(2)S四邊形ABOP=3-m;(3)存在,P(-3,).【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì),即可解答;(2)四邊形ABOP的面積=△APO的面積+△AOB的面積,即可解答;(3)存在,根據(jù)面積相等求出m的值,即可解答.【詳解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A(0,2),B(3,0),C(3,4),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(-m)=-m,∴S四邊形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=×4×3=6,若S四邊形ABOP=S△ABC=3-m=6,則m=-3,∴存在點(diǎn)P(-3,)使S四邊形ABOP=S△ABC.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),解決本題的關(guān)鍵是根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b,c.18.(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)B;(3)t=或t=或t=【分析】(1)根據(jù)點(diǎn)在平面直角坐標(biāo)系中的平移規(guī)律求解可得答案;(2)由1+t=n時(shí)t=n﹣1,知n﹣t=n﹣(n﹣1)=1,據(jù)此可得答案;(3)分n為奇數(shù)和偶數(shù)兩種情況,得出對(duì)應(yīng)的方程,解之可得n關(guān)于t的式子.【詳解】解:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)當(dāng)1+t=n時(shí),t=n﹣1.此時(shí)n﹣t=n﹣(n﹣1)=1,故選:B;(3)當(dāng)n為奇數(shù)時(shí):1+t=n﹣t解得t=,當(dāng)n為偶數(shù)時(shí):1+t=n﹣t+1解得t=,或1+t=n﹣t﹣1解得t=.【點(diǎn)睛】本題主要考查坐標(biāo)與圖形變化—平移,解題的關(guān)鍵是掌握點(diǎn)在平面直角坐標(biāo)系中的平移規(guī)律:橫坐標(biāo),右移加,左移減;縱坐標(biāo),上移加,下移減.19.(1)長(zhǎng)為,寬為;(2)正確,理由見解析【分析】(1)設(shè)長(zhǎng)為3x,寬為2x,根據(jù)長(zhǎng)方形的面積為30列方程,解方程即可;(2)根據(jù)長(zhǎng)方形紙片的周長(zhǎng)為50,陰影部分兩個(gè)長(zhǎng)方形的周長(zhǎng)之和為30列方程組,解方程組求出a即可得到大正方形的面積.【詳解】解:(1)設(shè)長(zhǎng)為3x,寬為2x,則:3x?2x=30,∴x=(負(fù)值舍去),∴3x=,2x=,答:這個(gè)長(zhǎng)方形紙片的長(zhǎng)為,寬為;(2)正確.理由如下:根據(jù)題意得:,解得:,∴大正方形的面積為102=100.【點(diǎn)睛】本題考查了算術(shù)平方根,二元一次方程組,解二元一次方程組的基本思路是消元,把二元方程轉(zhuǎn)化為一元方程是解題的關(guān)鍵.20.(1),;(2)【分析】(1)把和當(dāng)做未知數(shù),利用加減消元法解二元一次方程組即可;(2)先證明AB∥EF,則可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度數(shù)即可求解.【詳解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),解二元一次方程組,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.21.(1)方程的正整數(shù)解是或.(只要寫出其中的一組即可);(2)滿足條件x的值有4個(gè):x=3或x=4或x=5或x=8;(3)有兩種購(gòu)買方案:即購(gòu)買單價(jià)為3元的筆記本5本,單價(jià)為5元的鋼筆4支;或購(gòu)買單價(jià)為3元的筆記本10本,單價(jià)為5元的鋼筆1支.【解析】(1)---------------------------.(2)C(3)解:設(shè)購(gòu)買單價(jià)為3元的筆記本x個(gè),購(gòu)買單價(jià)5元的鋼筆y個(gè),由題意得:3x+5y=35此方程的正整數(shù)解為有兩種購(gòu)買方案:方案一:購(gòu)買單價(jià)為3元的筆記本5個(gè),購(gòu)買單價(jià)為5元的鋼筆4支.方案二:購(gòu)買單價(jià)為3元的筆記本10個(gè),購(gòu)買單價(jià)為5元的鋼筆1支(1)只要使等式成立即可(2)x-2必須是6的約數(shù)(3)設(shè)購(gòu)買單價(jià)為3元的筆記本x個(gè),購(gòu)買單價(jià)5元的鋼筆y個(gè),根據(jù)題意列二元一次方程,去正整數(shù)解求值22.(1);0≤x≤6時(shí),y=1.5x;x>6時(shí),y=6x-27;(2)該戶5月份水費(fèi)是21元.【分析】(1)根據(jù)3、4兩個(gè)月的用水量和相應(yīng)水費(fèi)列方程組求解可得a、c的值;當(dāng)0≤x≤6時(shí),水費(fèi)=用水量×此時(shí)單價(jià);當(dāng)x>6時(shí),水費(fèi)=前6立方水費(fèi)+超出部分水費(fèi),據(jù)此列式即可;(2)x=8代入x>6時(shí)y與x的函數(shù)關(guān)系式求解即可.【詳解】解:(1)根據(jù)題意,得:,解得:;當(dāng)0≤x≤6時(shí),y=1.5x;當(dāng)x>6時(shí),y=1.5×6+6(x-6)=6x-27;(2)當(dāng)x=8時(shí),y=6x-27=6×8-27=21.答:若某戶5月份的用水量為8米3,該戶5月份水費(fèi)是21元.【點(diǎn)睛】本題主要考查利用一次函數(shù)的模型解決實(shí)際問題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的列出解析式,再把對(duì)應(yīng)值代入求解.23.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三種情形討論計(jì)算.【詳解】(1)當(dāng),時(shí),可以得到217,127.較大三位數(shù)減去較小三位數(shù)的差為,而,∴.(2)當(dāng),時(shí),可以得a50,5a0.三位數(shù)分別為100a+50,500+10a,當(dāng)1≤a<5時(shí),(500+10a)-(100a+50)=450-90a,而,∴=,∴=;當(dāng)a=5時(shí),(500+10a)-(100a+50)=0,而,∴=0,∴=0;當(dāng)5<a≤9時(shí),(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;當(dāng),時(shí),可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;當(dāng)1≤a<5時(shí),5-a+27-3x=8,∴a+3x=24,∴當(dāng)a=1時(shí),x=(舍去),當(dāng)a=2時(shí),x=(舍去),當(dāng)a=3時(shí),x=7,當(dāng)a=4時(shí),x=(舍去),∴a=3,b=78;當(dāng)a=5時(shí),則27-3x=8,∴x=(舍去),當(dāng)5<a≤9時(shí),則a-5+27-3x=8,∴3x-a=14,∴當(dāng)a=6時(shí),x=(舍去),當(dāng)a=7時(shí),x=7,當(dāng)a=8時(shí),x=(舍去),當(dāng)a=9時(shí),x=(舍去),∴a=7,b=78;綜上所述,a=3,b=78或a=7,b=78.【點(diǎn)睛】本題考查了新定義問題和二元一次方程的整數(shù)解,準(zhǔn)確理解新定義的意義,靈活運(yùn)用分類思想和枚舉法是解題的關(guān)鍵.24.(1)豎式長(zhǎng)方體鐵容器100個(gè),橫式長(zhǎng)方體鐵容器538個(gè);(2)B;(3)19個(gè)【分析】(1)設(shè)可以加工豎式長(zhǎng)方體鐵容器x個(gè),橫式長(zhǎng)方體鐵容器y個(gè),根據(jù)加工的兩種長(zhǎng)方體鐵容器共用了長(zhǎng)方形鐵片2014張、正方形鐵片1176張,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)豎式紙盒c個(gè),橫式紙盒d個(gè),由題意列出方程組可求解.(3)設(shè)做長(zhǎng)方形鐵片的鐵板為m塊,做正方形鐵片的鐵板為n塊,由鐵板的總數(shù)量及所需長(zhǎng)方形鐵片的數(shù)量為正方形鐵皮的2倍,即可得出關(guān)于m,n的二元一次方程組,解之即可得出m,n的值,取其整數(shù)部分再將剩余鐵板按一張鐵板裁出1個(gè)長(zhǎng)方形鐵片和2個(gè)正方形鐵片處理,即可得出結(jié)論.【詳解】解:(1)設(shè)可以加工豎式長(zhǎng)方體鐵容器x個(gè),橫式長(zhǎng)方體鐵容器y個(gè),依題意,得:,解得:,答:可以加工豎式長(zhǎng)方體鐵容器100個(gè),橫式長(zhǎng)方體鐵容器538個(gè).(2)設(shè)豎式紙盒c個(gè),橫式紙盒d個(gè),根據(jù)題意得:,∴5c+5d=5(c+d)=a+b,∴a+b是5的倍數(shù),可能是2020,故選B;(3)設(shè)做長(zhǎng)方形鐵片的鐵板為m塊,做正方形鐵片的鐵板為n塊,依題意,得:,解得:,∵在這35塊鐵板中,25塊做長(zhǎng)方形鐵片可做25×3=75(張),9塊做正方形鐵片可做9×4=36(張),剩下1塊可裁出1張長(zhǎng)方形鐵片和2張正方形鐵片,∴共做長(zhǎng)方形鐵片75+1=76(張),正方形鐵片36+2=38(張),∴可做鐵盒76÷4=19(個(gè)).答:最多可以加工成19個(gè)鐵盒.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:找準(zhǔn)等量關(guān)系,正確列出二元一次方程(組).25.(1);(2);(3)當(dāng)點(diǎn)C在x軸的正半軸上時(shí),;當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)O之間時(shí),,理由見解析.【分析】(1)由非負(fù)性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質(zhì)可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質(zhì)可得AD∥BC.分兩種情況:當(dāng)點(diǎn)C在x軸的正半軸上時(shí);當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)O之間時(shí).由平行線的性質(zhì)可求解.【詳解】解:(1)由題意可知解得所以(2)三角形的面積為由得4<≤7所以;(3)作OF//BC,當(dāng)點(diǎn)C在x軸的正半軸上時(shí),如圖1,當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)O之間時(shí),如圖2,.【點(diǎn)睛】本題是幾何變換綜合題,考查了非負(fù)性,二元一次方程組的解法,一元一次不等式組的解法,平移的性質(zhì)等知識(shí),靈活運(yùn)用這些性質(zhì)進(jìn)行推理計(jì)算是本題的關(guān)鍵,要注意分類討論.26.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來電商模式探索與展望
- 現(xiàn)代企業(yè)財(cái)務(wù)管理的倫理與責(zé)任
- 生產(chǎn)管理策略與工藝優(yōu)化技術(shù)
- 災(zāi)害預(yù)防教育學(xué)校防災(zāi)減災(zāi)的必由之路
- 環(huán)保節(jié)能建筑的設(shè)計(jì)與實(shí)施案例分享
- 2024年重陽節(jié)活動(dòng)策劃方案-11
- 現(xiàn)代物流與科技融合的商業(yè)模式
- 國(guó)慶節(jié)房地產(chǎn)促銷方案
- 2024年五年級(jí)英語上冊(cè) Unit 6 In a nature park Part A 第三課時(shí)說課稿 人教PEP
- 2024-2025學(xué)年新教材高中語文 第二單元 5 雷雨(節(jié)選)(1)說課稿 部編版必修下冊(cè)
- 2025年1月浙江省高考政治試卷(含答案)
- 教體局校車安全管理培訓(xùn)
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末質(zhì)量檢測(cè)綜合物理試題(含答案)
- 導(dǎo)播理論知識(shí)培訓(xùn)班課件
- 空氣能安裝合同
- 中國(guó)人婚戀狀況調(diào)查報(bào)告公布
- 早產(chǎn)兒視網(wǎng)膜病變
- GB 10665-1997碳化鈣(電石)
- 《中小學(xué)教育懲戒規(guī)則》重點(diǎn)內(nèi)容學(xué)習(xí)PPT課件(帶內(nèi)容)
- 板帶生產(chǎn)工藝5(熱連軋帶鋼生產(chǎn))課件
- 2022年同等學(xué)力英語考試真題及詳解
評(píng)論
0/150
提交評(píng)論