版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
REAL-DATANETPRESSUREANALYSIS-OUTLINEIntroductionApplicationsandbriefexamplesStepsintheengineeringprocessPurpose,designandanalysisofdiagnosticinjectionsFractureclosurestressdetermination,fractureefficiencyandrequiredpadsizeRatestepdownanalysisGuidelinesfornetpressurehistorymatchingEstimatingfracturedimensions1REAL-DATAFRACTURETREATMENTANALYSISMatchingnetpressureisaNECESSARYbutnotSUFFICIENTconditionforestimatingfracgeometry2MOTIVATIONFORREAL-DATAFRACTURETREATMENTANALYSISBottomline:increasewellproductionandreducetreatmentcostbyoptimizationReducescreen-outproblemsAchieve“appropriate〞fractureconductivityandlengthControlwherefractureisgrowingDeeppenetrationinspecificlayerAvoidproductionofunfavorablecomponentsinneighboringlayers3FracturePressure
Analysis-AdvantagesBasicanalysisdatacollected(insomesense)duringeveryfractreatmentRelativelyinexpensiveandquickdiagnostictechniquetoapplyProvidesapowerfultoolforon-sitediagnosisoffractureentryproblemsAllowson-sitedesignrefinementbasedonobservedfracturebehavior4FracturePressure
Analysis-LimitationsFractureEntryFrictionEvaluationUsingsurfacepressureincreasesresultsuncertaintyProblematicnear-wellborefrictionlevelvariableNetPressureHistoryMatchingIndirectDiagnosticTechnique-fracgeometryinferredfromnetpressureandleakoffbehaviorSolutionnon-unique–careful&consistentapplicationrequiredforusefulresultsTechniquemostusefulwhenresultsareintegratedorcalibratedwithresultsofotherdiagnosticsProductiondata&welltestanalysisDirectfracturediagnostics5PrimaryFracturePressure
AnalysisActivitiesEvaluationoffractureentryfrictionPerforationfriction+near-wellborefrictionAcommoncauseoffractureexecutionproblemsNetpressurehistorymatching“Calibration〞ofmodelsolutiontoobservedfracpressuredataLinksfracturedesignandestimatedfracgeometrytoobservedfracturebehavior6DEFINITIONOFNETPRESSURENetPressureisthePressureInsidetheFractureMinustheClosurePressureNetPressure=2,500-2,000=500psi7BALLOONANALOGYFOROPENINGFRACTUREWITHCONSTANTRADIUS8FRACTUREGEOMETRYCHANGESWITHNETPRESSURETwomodelingsolutionsforthesametreatment;if500psistresscontrastexistsaroundpayzoneL=1200feetR=240feetPnet=100psiPnet=800psiPredictednetpressurePredictedfracdimensions9ESTIMATINGFRACDIMENSIONSUSINGREALDATAANDRADIALFRACASSUMPTIONFor: Volume V = 4,800bbl(~27,000ft3)(~760m3) Efficiency e = 0.5 Young’smodulus E = 2x106psi Netpressure
= 500psi Yields: R ~ 416ft
w ~ 0.8inMassbalanceElasticopening10INFLUENCEOFNETPRESSURETworadialfracturemodelsolutionsforthesametreatment(nobarriers):R = 650feetw = 0.25inR = 260feetw = 1.6inPnet = 50psiPnet = 800psiPredictednetpressurePredictedfracturedimensions11LIMITATIONSOFSIMPLIFIEDRADIALFRACCALCULATIONTOESTIMATEFRACDIMENSIONSNostressvariationsLithologyisassumedconstantPermeabilityvariationsareignoredMechanicalrockpropertiesdonotvarywithheightSimplifiedradialfluidflowNotapredictivetool12NETPRESSUREVS.FRICTIONPRESSURE13NETPRESSUREMATCHING14123415MinimumModelInputRequirementsMechanicalrockproperties–logdataFocus:Young’smodulusandpermeabilityWellcompletionandperforationsTreatmentschedule,proppantandfluidcharacteristicsTreatmentdataWith“anchorpoints〞Atleast3-secondsamplingratewithsurfacepressure,slurryrateandproppantconcentration16RequiredforNetPressureMatchingObtainsurfacepressurefromservicecompaniesrecordeddataObtainhydrostaticheadfromstagingandfluid/proppantdensitiesObtainfrictionalcomponentsfromS/DtestsObtainfractureclosurestressfrompressuredecline17DESIGNANDANALYSISOFDIAGNOSTICINJECTIONSPurposeofdiagnosticinjectionsDesignofdiagnosticinjectionsAnalysisofdiagnosticinjectionsClosurestressanalysisFrictionpressureanalysis18“TYPICAL〞FRACTURETREATMENTDATANetpressure?Closure?Leak-off?Friction?19“TYPICAL〞FRACTURETREATMENTDATAScreen-outNetpressure?Closure?Leak-off?Friction?20“TYPICAL〞FRACTURETREATMENTDATANetpressure?Closure?Leak-off?Friction?21“TYPICAL〞FRACTURETREATMENTDATADoesnotprovideenoughdata(“anchorpoints〞)todoreal-data(netpressure)fracturetreatmentanalysisUnabletomakereliableestimatesofthefracturedimensionsORItispossibletocomeupwithanyfracturedimensionyouwant,becausethereal-data(netpressure)fracturesolutionisnotbounded22REAL-DATAANALYSISISTHEKEYTOEFFECTIVEFRACSIMULATION“Usingasimulatorwithoutreal-datafeedbackislikeusingaflashlightwhilewearingablindfold〞
--BillMinner,PinnacleTechnologies23PURPOSEOFDIAGNOSTICINJECTIONSProvide“anchorpoints〞forreal-data(netpressure)analysisObtainaccuratemeasurementofthetruenetpressureinthefractureOnsitediagnosisandremediationofproppantplacementNear-wellboretortuosityPerforationfrictionfluidleakoffBottomline:provideaccurateestimatesofthefracturegeometry24RECOMMENDEDDIAGNOSTICINJECTIONPROCEDURES25ON-SITETREATMENTDIAGNOSTICS26“ANCHORPOINT〞:FRACTURECLOSURESTRESS27“ANCHORPOINTS〞:ISIPPROGRESSION28“ANCHORPOINTS〞:FRICTIONALCOMPONENTS29NEEDEDFORDIAGNOSTICINJECTIONS100to200BblofKClwater100-500Bblextracrosslinkgel(optional)Fromabout30minutesupto3hoursextrarigtimeincomparisonwithafractreatmentwithoutdiagnosticsGathertreatmentdataevery2secondsTherefore,diagnosticinjectionsarerelativelyquickandinexpensive30IMPORTANCEOFMEASURINGCLOSURESTRESSReliableestimateoffracturedimensionsObtainaccuratevalueofthenetpressureReferencedtoclosurestresslevelUsereal-datanet-pressurematchingFluidefficiencyScreen-outpotentialDirectlyrelatedtofracturedimensionsMini-fracanalysisonlyprovidesoneclosurestressvalueMoreinjectionteststoestimateclosurestressinneighboringlayersAppropriatenessofselectedproppant31EXAMPLEOFFRACTUREGEOMETRYFORALOWNETPRESSUREFracwithconfinedheightgrowth32EXAMPLEOFFRACTUREGEOMETRYFORAHIGHNETPRESSURERadialfrac33DIFFERENTMETHODSTOOBTAINFRACTURECLOSURESTRESSPressuredeclineanalysisSquare-roottimeplotG-functionplotLog-logplotRatenormalizedplotHornerplot(lowerbound)FlowpulsetechniqueFlowbacktest
Stepratetest(upperbound)HydraulicImpedancetesting(HIT)34PRESSUREDECLINEANALYSISPressuredeclineafteramini-fracpassesthroughtwoflowregimes:Linearflowregime;Pressuredeclinedependson:fluidleakoffratefracturecomplianceRadialflowregime;Pressuredeclinedependson:reservoirdiffusivityClosurestress(pressure)isidentifiedbythetransitionbetweenthetwoflowregimes35WHATCANYOUOBTAINFROMPRESSUREDECLINEANALYSIS?Fractureclosurepressure(minimumstress)FluidefficiencyLeakoffcoefficient,reservoirpermeabilityandpressureFracturegeometryestimate36PRESSUREDECLINEANALYSIS–SQUARE-ROOTTIMEPLOT37PRESSUREDECLINEANALYSIS–G-FUNCTIONPLOT38PRESSUREDECLINEANALYSIS–LOG-LOGDELTAPRESSUREPLOT39Steprate/FlowbacktestStepRateTestStartatmatrixrateIncreaseinstepsuntilfractureextended(?1to10BPM)ProvidesupperboundforclosureCandetermineifyouarefracturingatallFlowbackatConstantRatePump-In/Flowback/Shut-inTest(SPE24844)HighpermwellwheretheFB-SIisrunafterthegelcalibrationtestotherwisevolumeoffractureistosmallduetohighleakoffHere‘fracWBpinch’isidentifiedatclosure:verysmall~30psiSI-Rebound<pcindependentof"tortuosity"SPEPFFeb'97FBinduced"wellborepinch”"near-wellpinch"~15min41PRESSUREDECLINEANALYSIS-
NOCLEARSLOPECHANGEClosure?Closure?42POSSIBLESOLUTION:USEFLOWPULSETECHNIQUEOpenClosedClosureClosed43FLOWPULSETECHNIQUETOGETACCURATECLOSURESTRESSAverageclosurestressforminifracarea(relativelyfarawayfromtheborehole)Simpleandcheaptechnique:pump2ormoreflowpulseswithasmallvolumerelativetopreviousinjections(e.g.4bblat10BPM)andmeasurepressurefalloffusingstandardon-siteequipmentShouldbeusedespeciallywhenbreakinslopeinthepressuredeclinevs.square-rootoftimeplotisnotclearAccuracyontheorderoftensofpsi44PRINCIPLEOFTHEFLOWPULSETECHNIQUEFlowPulsePumpedinOpenFractureLowerstiffnessduetolargefractureradiusSmallriseinequilibratedpressureOnlyminorwidthincreasePressuredeclineslopeaspriortopumpingFlowPulsePumpedinClosedFractureHighstiffnessduetosmallfractureradiusLargeriseinequilibratedpressureLargechangeinfracturewidthFasterpressuredecline45PRINCIPLEOFTHEFLOWPULSETECHNIQUE46TORTUOSITYCANBEMEASURED:STEPDOWNTESTInstantaneousratechanges,e.g.30,20,10and0BPM--exactratesareunimportant,butchangesshouldbeabruptImplementedeasiestbytakingpumpsofflineEachratesteptakesabout20seconds--justenoughtoequilibratethepressureFracturegeometryshouldnotchangeduringstepdown--totalstepdowntestvolumesmallcomparedtotestinjectionvolume(note:pfracnotproportionaltoQ1/4duringstepdowntest)Usedifferencesinbehaviorofthedifferentfrictioncomponentswithflowrate47WHATISTORTUOSITY?WIDTHRESTRICTIONCLOSETOWELLBORE48WIDTHRESTRICTIONINCREASESNECESSARYWELLBOREPRESSURE49NetfracturingpressureTORTUOSITYLEADSTOLARGEPRESSUREDROPINFRACTURECLOSETOWELLPressureaftershut-inWellboreDistanceintofractureFracturetipNear-wellborefrictionHighLow50FRACTURESGROWPERPENDICULARTOTHELEASTPRINCIPLESTRESS--BUTWHATHAPPENSATTHEWELLBORE?51NEAR-WELLBOREFRICTIONVS.PERFORATIONFRICTION52NEAR-WELLBOREFRICTIONVS.PERFORATIONFRICTION53WHATISTORTUOSITY?SIMPLETORTUOSITYMODEL54TORTUOSITYCANBEMEASURED:STEPDOWNTESTSource:“SPEpaper29989byC.A.Wrightetal.Perforationfrictiondominatedregime55TORTUOSITYCANBEMEASURED:STEPDOWNTESTNear-wellborefrictiondominatedregime56MAXIMUMTREATINGPRESSURELIMITATIONISREACHED--CAN’TPUMPINTOZONEHighentryfrictionHighperffrictionSeverefracturetortuosityRe-perforateUseproppantslugsInitiatewithhighviscosityfluidIncreasegelloadingIncreaserateFuturewellsmayhavealteredcompletionstrategysuchasFEWERperfs57NETPRESSUREMATCHINGMatch“observed〞netpressurewithcalculated“model〞netpressureObservednetpressureobtainedfromsurfaceordownholetreatmentpressureCorrectforfractureclosure,frictionaleffectsandhydrostaticModelnetpressurecanbechangedtomatchobservednetpressuresusingthefollowinggeneral“knobs〞(seenextpage)58HISTORYMATCH“ANCHORPOINTS〞:FRACTURECLOSURESTRESS,FLUIDLEAKOFFANDISIPPROGRESSION59HISTORYMATCH“ANCHORPOINTS〞:FRACTURECLOSURESTRESS,FLUIDLEAKOFFANDISIPPROGRESSION60KEYVARIABLESFORNETPRESSUREHISTORYMATCHING61EFFECTOFFORMATIONYOUNG’SMODULUSModulusshouldbeobtainedfromstatictests(preferablysimilartofracturingconditions)Dynamicmodulustwotimesormorelargerthanstaticmodulus(usewithcaution!)Oncemodulusisdetermined,thisshouldbeaFIXEDparameterinanetpressurematchingproceduresAnincreaseinYoung’smodulusresultsinlessfracturewidth(forthesamenetpressure)Forsimpleradialmodel:Lfrac
E1/3(forthesamenetpressure)Modelingresultsnotextremelysensitivetomodulus.62EFFECTOFFRACTURECLOSURESTRESSCONTRASTClosurestressprofiledeterminesfractureshapeRadialifstressprofileisuniform(theoreticaldecreaseinnetpressurewithpumptime)Confinedheightgrowthifclosurestress“barriers〞arepresent(theoreticalincreaseinnetpressurewithpumptime)Effectivenessof“barrier〞determinedbyClosurestresscontrastLevelofnetpressure“Typical〞sand-shaleclosurestresscontrast0.05-0.1psi/ftHigheriftherehasbeensignificantdepletion(~2/3ofporepressurechange)Lowerifsandsandshalesarenotclean63CLOSURESTRESSPROFILEClosurestress
mindeterminesminimumpressuretoopenafractureUsuallyclosureincreaseswithdepthClosurestressislithologydependent(shalesusuallyhigherthansands)Representsonlytheminimumprincipalstresscomponentinthevicinityofthewell64DEPLETION:INCREASEDEFFECTIVESTRESS;DECREASEDTOTALSTRESSReservoirPoresRockMatrixUntappedReservoirProducingReservoirIncreasedEffectiveStressDecreasedTotalStress65MANYEFFECTSOFDEPLETIONINDUCEDSTRESSCHANGESAREWELLKNOWNDecreasesinTotalStress:Lowerfracgradientindepletedzones(refracs,etc.)FracturecontainmentwithindepletedintervalsIncreasesinEffectiveStress:Reservoircompaction(surfacesubsidence)ReducedconductivityofproppedfracsReductionofreservoirporosity(andpossiblypermeability)ReservoirDepletionResultsIn:66POREPRESSUREVARIATIONSCHANGEFRACTUREORIENTATIONsource:SPEpaper29625byWrightetal.67POREPRESSUREVARIATIONSCHANGEFRACTUREDIMENSIONS68HEIGHTGROWTHDUETOLEVERAGE69HEIGHTGROWTHDEPENDSONSTRESSCONTRASTANDNETPRESSURE70EQUILIBRIUMFRACTUREHEIGHTLeveragebyopeningofafracureleadsto(limited)heightgrowth--alsoifthenetpressureislowerthantheclosurestresscontrast71HOWISHEIGHTGROWTHAFFECTEDBYPERMEABILITYBARRIERSApermeabilitybarrierwithextremepermeability(e.g.1Din10mDformation)mayconfinefractureheightgrowthSource:T.Quinn,Ph.D.Thesis,MIT72COMPOSITELAYERINGEFFECTSLOWSDOWNFRACTUREHEIGHTGROWTH73EFFECTOFFRACFLUIDLEAKOFFFormationpermeabilityunderfracturingconditionscanbeverydifferentfromperm“seen〞byproductionrelativepermeabilityforfracfluidopeningofnaturalfracturesPermeabilitygenerally“fixed〞innetpressurematchbyinitialKClinjectionpressuredeclineWallbuildingcoefficientforcrosslinkgel“fixed〞byminifracpressuredeclineEnd-of-jobpressurecanshowdifferentleakoffbehaviorthanmini-frac.ItisKEYtomatchpost-fracpressuredeclinetoobtainrealisticfracturedimensions74FRACTURINGFLUIDLEAKOFFFractureFiltercakeInvadedZoneReservoirFiltercakeFractureInvadedZoneReservoir<1/10inch0.5to
3feetTypicalExtent100’soffeet75FLUIDLOSSEQUATIONSCkpvia
0046912./
CpkCcrrr
0037412./
CmAw
00164.(MeasuredinLab)ki=PermeabilitytoFiltrate,darcies
p =(
x+pnet)-p,psi
=FormationPorosity,fraction
a =ViscosityofFiltrate,cpkr =PermeabilitytoReservoirFluid,mdCt =TotalCompressibility,psi-1
r
=FormationFluidViscosity,cpm =SlopeofVolumevstGraphA =AreaofCoreUsedtoMeasureCwFluidlossininvadedzone:Fluidlossinvirginzone:Fluidlossinfiltercake:FracproPTmodelsACTUALpressuredifferentialversustime76FLUIDLEAKOFFANDSLURRYEFFICIENCYLOWSLURRYEFFICIENCYShortFractureHighFiltrationLongerFractureHIGHSLURRYEFFICIENCYLowFiltrationVpumpedVfracEfficiency=77EFFECTOFPROPPANTINFRACTUREProppantcanreachthefracturetipand“bridge〞,resultinginatipscreen-out.ThiscanhappenifFluidleakoffisrelativelyhighVolumefractionofproppantinthefractureishighIfatipscreen-outoccurs,onlythewidthofthefracturecangrowLinearincreaseinnetpressurewithvolume(Nolte’sunitslope)78WHATISPROPPANTCONVECTION?DOWNWARDTRANSPORT
OFDENSESLURRY79WHATISPROPPANTSETTLING?DOWNWARDTRANSPORTOF
DENSEPROPPANTGRAINSINFLUID80PROPPANTCONVECTIONFASTERTHANPROPPANTSETTLINGw = Fracturewidth
d = ProppantdiameterRatioVc/Vs~100-1000(Maybemuchhigherduetoencapsulation)81PROPPANTCONVECTIONFASTERTHANPROPPANTSETTLINGDUETOENCAPSULATIONheavyslurrylightslurryorpadfluidSource:SPEpaper24825byM.P.Clearyetal.82WHATARETIPEFFECTS?
NON-LINEARELASTICROCKBEHAVIOR/“TIPPROCESSZONE〞Non-linearrockbehavioratlargedifferentialcompressionalstressRockmayswellwithlargeconfiningstressesintwodirectionsandnoconfinementintheotherdirectionTipprocesszone(withopeningfractures)slowsdownfracturegrowthFracturewidthnearthefracturetipsmallerthanexpected83TIPEFFECTS--INCREASEDFRACTUREGROWTHRESISTANCE84PROCESSZONEAROUNDFRACTURETIPExperimentsbyShlyapoberskyrevealfractureprocesszoneProcesszoneisscaledependent,andresultsinmultiplefracturesaheadofhydraulicfracturetipCanresultinhighernetpressurestopropagatefracture85CONSEQUENCESOFTIPEFFECTS:INCREASEDNETPRESSUREANDFRACTUREWIDTHNon-linearelasticmodelLinearelasticmodelpnetLfNon-linearelasticmodelLinearelasticmodelwfracLf86EvidencefortheSimultaneousPropagationofMultipleHydraulicFracturesCorethroughandminebackexperimentsDirectobservationsofmulti-planarfracturepropagationFracturegrowthoutsideplaneofwellboreObservationofhighnetfracturingpressuresContinuousincreasesinISIPsforsubsequentinjections
Conclusion:multiplefracturesaretheruleratherthantheexception87CausesofMultipleHydraulicFractureGrowth88MultipleStrandsinaProppedFractureNEVADATESTSITEMINEBACKCourtesy:N.R.Warpinski,SandiaLabs89M-SITEBSANDINTERSECTINGWELLCorePhotoProjectedBoreholeFMSImageF11F10F9F8F7F6F5F4F3F2F146754676467746782-1/2in.Coredia.Courtesy:N.R.Warpinski90CONSEQUENCESOFMULTIPLE
HYDRAULICFRACTURES:INCREASEDNETPRESSURE91ConsequencesofMultipleHydraulicFractures:ReducedDimensionsandWidth9293UseMultipleHydraulicFracturesPrudentlyforModelingPurposesPotentialcausesforhighnetpressures:ConfinedfractureheightgrowthIncreasedfractureclosurestressduetoporepressureincreaseHigherYoung’smodulusthananticipatedFracturetipeffectsTipscreen-outinitiationSimultaneouslypropagatingmultiplehydraulicfractures94VenturingintotheDeep,DarkWorld
ofFracproPTMultipleFractures……...F9ReservoirParameters“MultipleFractures〞Screen“FracproPTisthemostpowerfulandversatile
fractureengineeringsystemavailable〞Translation:
*TherearemanywaystoscrewupUsingasawandahammer,itiseasiertomangleyourfingersthanto
buildfinefurnitureSolution:Carefulandconsistentmultiplefractureusage(methodology)Tableusagemustmakesenseconsideringrockandcompletion
characteristics!ChangemultiplefracturesettingsonlyduringpumpingFRACTUREGEOMETRYRESULTINGFROMDIFFERENTPERFORATIONSTRATEGIES96MULTIPLEHYDRAULICFRACTURESINFRACPRO97MULTIFRACMODELINGAPPROACHFORLIMITED
DIFFERENTPERFORATIONSTRATEGIES98ModelingApproachforMultipleHydraulicFractures
SituationEquivalentnumberofgrowingmultiplefracs(MV)Equivalentnumberoffractureswithleakoff(ML)Equivalentnumberoffracscompetingforwidth(MO)331322313EquivalentnumberofspacedidenticalfractureswithoutinterferenceEquivalentnumberoffracturescompetingForwidth99APPLICATIONSOptimizationofbasictreatmentandcompletiondesignSolvingfractureentryfrictionproblemsRoutineon-sitepadvolumesizingtoaccommodategeologicvariabilityDesignfornewfracturingenvironment100EXAMPLEAPPLICATION--“PRESSURE-OUT〞ONPADFormation: Naturallyfractureddolomite@8900’(gas)Completion: 5-1/2〞casingfracstring,max.pressure6000psi; 70’perfintervalshotat4SPF,90,0.45〞diameter hole; Previouslyacidizedwith70gallons/ft20%HClSituation: Declininginjectivityleadingto“pressure-out〞onpadDiagnosis: Severenear-wellborefracturetortuositySolution: 1and2PPGproppantslugsveryearlyinthepadto screenoutfracturemultiples101EXAMPLEAPPLICATION--“PRESSURE-OUT〞ONPADTime(mins)Surfacepressure(psi),Proppantloading(ppg)Slurryrate(bpm),Bottomholeprop.concentration(ppg)0.030.060.090.0120.0150.00120024003600480060000.020.040.060.080.0100.00.004.008.0012.0016.0020.000.004.008.0016.0020.001400psireduction(1stslug)SurfacepressurelimitationS/D#2:300psitortuosityIncreasedmaxproppantconcentrationS/D#1:1700psitortuosity;smallperffric.zerotortuosityatendofpumping102EXAMPLEAPPLICATION--“PRESSURE-OUT〞ONPADEarlierwellsinneighborhoodpressured-outonpadProppantslug(1ppg)pumpedearlyinthetreatmentpreventedupcomingpressure-outandreducedtortuosityby1400psiTortuosityreductionallowedpumpingtreatmentfarbelowsurfacepressurelimitof6000psiBasedonpressureresponse,maximumproppantconcentrationcouldbeincreased(from4to6ppg)inreal-timetoobtainhigherfracconductivityTreatmentresultedin3-foldproductionincrease(incomparisontoafteracidtreatment)to3MMSCFD103EXAMPLEAPPLICATION--REALISTICESTIMATIONOFFRACTUREHALF-LENGTHFormation: Hardsandstone@7600’(gas)Completion: 5-1/2〞casingfracstring;40’perfintervalshotwith4 SPF,90phasing,0.31〞diameterholesSituation: Disappointingproductionperformanceforexpected 600ftfracturehalf-length(basedonfracturegrowth modelingwithoutreal-datafeedback)Diagnosis: Sand/shalestresscontrastmuchlowerthan estimated,resultinginsignificantfractureheight growthandamuchshorterfracturehalf-length(250’)Solution: Utilizefracturepressureanalysistooptimizefracture treatmentdesign104EXAMPLEAPPLICATION--REALISTICESTIMATIONOFFRACTUREHALF-LENGTHObservednetpressurecouldnotbematchedusinginitialassumptionofalarge0.2psi/ftsand/shalestresscontrast.Withasmallersand/shalestresscontrast(0.05-0.1psi/ft),thefracturegrowssignificantlyinheight,resultinginamuchshorterfracturehalf-length105EXAMPLEAPPLICATION--REALISTICESTIMATIONOFFRACTUREHALF-LENGTHBasedondipole-sonic,initialsand-shalestresscontrastwasestimatedat0.2psi/ftEstimatedfracturehalf-lengthof600ftProductionresponsewasrelativelylowNetpressurebehaviorcouldnotbematchedwithclosurestresscontrastassumption.Netpressurematchforcontrastof0.1psi/ftActualfracturehalf-lengthabout250ftActualclosurestressdirectlymeasured,andconfirmednetpressure-inferredvalueRealisticfracturehalf-lengthandreal-dataanalysisusedtooptimizefracturetreatmentstrategy106EXAMPLEAPPLICATION--TIPSCREEN-OUTSTRATEGYTOOBTAINSUFFICIENTCONDUCTIVITYFormation: Highpermeabilitylayeredsandstoneat6000ft(oil)Completion: Deviatedwellbore,3-1/2〞tubingfracstring 30’perfintervalshot4SPF,180phasingoriented perfs,0.5〞diameterholesSituation: Relativelypoorpost-fracproductionresponseforhigh permreservoirDiagnosis: InsufficientproppedfractureconductivitySolution: Increasetreatmentsize,andutilizeon-sitefracture pressureanalysistoconsistentlyachievetip screenoutforenhancedfractureconductivity107EXAMPLEAPPLICATION--TIPSCREEN-OUTSTRATEGYTOOBTAINSUFFICIENTCONDUCTIVITYPadsizingforTSOdesignwasdoneutilizingleakoffcalibrationwithminifrac.Thenetpressurematchshowsasignificantincreaseinpressureduetotipscreen-outinitiationBreakdowninjectionMinifracPadfluidvolumeadjustedbasedonleakoffbehaviorfollowingcrosslinkgelminifracTipscreen-outinitiation108EXAMPLEAPPLICATION--TIPSCREEN-OUTSTRATEGYTOOBTAINSUFFICIENTCONDUCTIVITYProductionresponseinKuparukAsandlimitedbyfractureconductivityTipscreen-outobtainedinmorethan90%oftreatmentsSizingofpadsizeusingcalibrationofleakoffcoefficientkeytosuccessOn-sitereal-timeclosurestressanalysisimplementedoneverytreatmenttoensureproperpadsizeispumped109HONORINGREAL-DATA:EXAMPLEOFFRACTREATMENTINJAPANExtremelyhighnetfracturingpressuresinadeepgaswellinJapanesevolcanicreservoirCausedbysomedegreeofsimultaneouspropagationofmultiplehydraulicfracturesExampleprovidesroughboundsfortrade-offbetween“tipeffects〞andpropagationofmultiplefracturesResultedinverynarrowfracturewidth(poorconductivity)andveryearlyprematurescreen-outProduction/pressurebuild-uptestshowshorteffectivefracturehalf-length(~45ft)that“disappears〞withearlyproduction
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理人員中醫(yī)技術(shù)使用手冊
- 企業(yè)科研儀器的選型、采購及驗收管理
- 創(chuàng)新教育在小學(xué)科學(xué)實驗中的應(yīng)用案例分析
- 創(chuàng)新思維在跨平臺社交媒體中的應(yīng)用
- 創(chuàng)意市場營銷策略在教育市場的重要性
- 企業(yè)創(chuàng)新挑戰(zhàn)與機遇并存
- 利用網(wǎng)絡(luò)平臺提升家長參與度的方法研究
- 以用戶為中心的學(xué)校教學(xué)資源共享平臺設(shè)計研究
- 創(chuàng)新性的安全生產(chǎn)信息管理系統(tǒng)設(shè)計與應(yīng)用探索
- 信息科技在醫(yī)療領(lǐng)域的應(yīng)用與挑戰(zhàn)
- 關(guān)于“中國天眼”為主題的閱讀(2021湖北荊門中考語文非連續(xù)性文本閱讀試題及答案)
- MySQL數(shù)據(jù)庫教程PPT完整全套教學(xué)課件
- 部編版三年級語文上期末專項訓(xùn)練 作文總復(fù)習(xí)(八個單元含范文)優(yōu)質(zhì)
- 涉詐風(fēng)險賬戶審查表
- 2023上海四年級第一學(xué)期期末考試數(shù)學(xué)試卷
- GB/Z 10096-2022齒條精度
- JJF 1918-2021電容式加速度傳感器校準規(guī)范
- GB/T 5023.4-2008額定電壓450/750 V及以下聚氯乙烯絕緣電纜第4部分:固定布線用護套電纜
- GB/T 12967.3-2022鋁及鋁合金陽極氧化膜及有機聚合物膜檢測方法第3部分:鹽霧試驗
- 煙花爆竹作業(yè)安全技術(shù)規(guī)程
- 公文寫作-應(yīng)用文寫作課件
評論
0/150
提交評論