高二數(shù)學(xué)必修基礎(chǔ)的知識要點_第1頁
高二數(shù)學(xué)必修基礎(chǔ)的知識要點_第2頁
高二數(shù)學(xué)必修基礎(chǔ)的知識要點_第3頁
高二數(shù)學(xué)必修基礎(chǔ)的知識要點_第4頁
高二數(shù)學(xué)必修基礎(chǔ)的知識要點_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高二數(shù)學(xué)必修基礎(chǔ)的知識要點高二數(shù)學(xué)必修基礎(chǔ)的知識要點11、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.2、圓的方程(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;(2)一般方程當(dāng)時,方程表示圓,此時圓心為,半徑為當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形.(3)求圓方程的:一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.3、高中數(shù)學(xué)必修二知識點:直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況:(1)設(shè)直線,圓,圓心到l的距離為,則有;;(2)過圓外一點的切線:k不存在,驗證是否成立k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.設(shè)圓,兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.當(dāng)時兩圓外離,此時有公切線四條;當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線5、空間點、直線、平面的位置關(guān)系公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).應(yīng)用:判斷直線是否在平面內(nèi)用符號語言表示公理1:公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線符號:平面α和β相交,交線是a,記作α∩β=a.符號語言:公理2的作用:它是判定兩個平交的方法.它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線公共點.它可以判斷點在直線上,即證若干個點共線的重要依據(jù).公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)公理4:平行于同一條直線的兩條直線互相平行高二數(shù)學(xué)必修基礎(chǔ)的知識要點2集合的分類:(1)按元素屬性分類,如點集,數(shù)集。(2)按元素的個數(shù)多少,分為有/無限集關(guān)于集合的概念:(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。(3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。集合可以根據(jù)它含有的元素的個數(shù)分為兩類:含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實數(shù)直觀地定義為和數(shù)軸上的'點一一對應(yīng)的數(shù)。)1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}.有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。例如:集合A={x∈R│x2-1=0}的特征是X2-1=0高二數(shù)學(xué)必修基礎(chǔ)的知識要點3函數(shù)的單調(diào)性、奇偶性、周期性單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。判定方法有:定義法(作差比較和作商比較)導(dǎo)數(shù)法(適用于多項式函數(shù))復(fù)合函數(shù)法和圖像法。應(yīng)用:比較大小,證明不等式,解不等式。奇偶性:定義:注意區(qū)間是否關(guān)于原點對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。判別方法:定義法,圖像法,復(fù)合函數(shù)法應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)平移變換y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。(ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。對稱變換y=f(x)→y=f(-x),關(guān)于y軸對稱y=f(x)→y=-f(x),關(guān)于x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論