版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Advanced
Digital
SignalProcessing(Modern
Digital
Signal
Processing)Chapter
2
Discrete
Wiener
Filterand
Discrete
Kalman
Filterv(n)s(n):
signalv(n):
noisex(n):
observation
or
measurement:
estimation
of
s(n)h(n):
estimator
or
filter2.1
The
Wiener
Filtering
ProblemState
(Wave)
Estimation
Problemh(n)s(n)x(n)Optimum
Estimation
&
Linear
EstimationLinear
estimationOptimum
estimationThe
estimation
is
optimal
under
certain
criterionWiener
FilterThe
linear
estimator
of
stationary
random
signawith
least
square
error
(LSE,
the
MMSEwithout
prior
PDF)2.2
Normal
Equations
for
Wiener
FilterOrthogonal
PrincipleThe
relationship
between
e(n)
and
x(n)
orfilterin
Wieneri.e.
the
filter
h(n)
is
optimal
iff
the
e(n)
and
x(n)
is
orUnderstanding
of
the
Orthogonal
PrinciplWiener-Hopf
EquationThe
requirement
for
the
coefficients
ho(n)
of
Wiener
filtWiener-Hopf
Equation
in
z-domainIf
s(n)
is
uncorrelated
with
the
v(n),
i.e.then
Wiener-Hopf
Equation
in
Frequency-domainIf
s(n)
is
uncorrelated
with
the
v(n),
i.e.thenIntuitive
Interpretation
of
the
Wiener
F2.3
Solutions
for
Wiener
Filter
Causal
FIR
Wiener
Filter
(Solution
inTime
Domain)Causal
FIR
filterWiener-Hopf
equation
with
causal
FIR
filterorSolution
of
causal
FIR
Wiener
filterIf
Rxx
is
nonsingular,
thenHowever,
such
a
solution
is
often
computatioimpractical
when
the
N
increases.
Estimation
error
(MSE)
of
causal
FIRWiener
filterThe
mean
square
error
(MSE)
for
causal
FIRfilter
is
a
quadratic
function
of
the
filter
covector
h
and
has
a
single
minimum
pointFor
example,
when
N=2,
i.e.
h=[h(0),
h(1)],
the
MSEfunction
is
a
bowl-shaped
surface
with
a
single
minipoint.Non-causal
IIR
Wiener
FilterSolutionIf
s(n)
is
uncorrelated
with
the
v(n)Estimation
error
(MSE)If
s(n)
is
real-valued
and
uncorrelated
with
the
v(n)hence,Causal
IIR
Wiener
FilterSpectral
factorization
theoremRational
power
spectrum
signalA
random
signal
whose
power
spectrum
is
ais
called
arational
function
ofrational
power
spectrum
signal.Spectral
factorization
theoremA
real-valued
stationary
random
sequencewith
rational
power
spectrum
can
berepresented
by
a
time
series
modelWhitening
filterB(z)w(n)
x(n)B-1(z)x(n)w(n)signal
model
(invertible)whitening
filterCausal
IIR
Wiener
filter
with
a
white
noiseas
inputWiener-Hopf
equationSolutionG(z)w(n)u(j)
denotes
unit
step
sequen
Causal
IIR
Wiener
filter
with
a
rationalpower
spectrum
signal
as
inputH
(z)x(n)B-1(z)x(n)B(z)w(n)
Steps
to
compute
the
causal
IIR
WienerfilterSpectral
factorizationCausal
decompositionCompute
the
causal
IIR
Wiener
filterImpulse
responseEstimation
error
(MSE)
MSE
Comparison
of
Different
WienerFilter2.4
Example
for
Solving
Causal
IIRWiener
FilterGiven:
signal
modelmeasurementmodelAssumptions:White
noisesSignal
model
in
z-domain:Spectral
FactorizationCausal
DecompositionCausal
IIR
Wiener
Filter
Impulse
Response
of
the
Causal
IIRWiener
Filter2.5
Wiener
PredictionIntroductionPredictionEstimating
the
s(n+N),
N>0
based
on
theobservations
x(n),
x(n-1),
….Basic
requirements
for
predictionThe
signal
to
be
predictable
is
correlatedwith
the
observations,
i.e.
the
future
of
thesignal
is
relevant
with
its
past
(white
noiseis
completely
unpredictable).Wiener
predictionThe
linear
estimation
of
the
s(n+N)
withminimum
mean
square
error.Basic
Form
of
Wiener
PredictionWiener-Hopf
equation
in
predictionNon-causal
IIR
Wiener
predictorCausal
IIR
Wiener
predictor
Pure
Wiener
Prediction
(withoutObservation
Noise)Non-causalCausal
IIR
pure
Wiener
predictorPrediction
error
(MSE):
One-steplinear
predictor
(one-step
causalFIR
pureWiener
predictor,
solution
in
time-domain)i.e.The
Yule-Walker
equation
set
is
homogeneous
except
forfirst
equation.It
does
not
need
the
cross-correlation
between
signal
sobservation
x(n).It
has
p+1
equations
and
p+1
unknowns.
The
optimal
one-step
linear
predictor
and
its
prediction
error
(MSE)
canobtained
by
solving
these
equations.It
is
often
used
to
solve
AR
model
parameters.Yule-Walker
Equation:
homogeneous
equation
set
except
thefirst
equationAdditive
Noise
Reduction2.6
Applications
of
Wiener
Filterv(n)h(n)s(n)x(n)An
illustration
of
the
variation
of
Wiener
frequencyresponse
with
signal
spectrum
for
additive
white
noise.Wiener
filter
response
broadly
follows
the
signal
spectrWiener
Channel
EqualiserNoise
v(n)equaliserD-1(z)s(n)x(n)
ChannelChanneldistortionD(z)IntroductionKalman
FilteringA
recursive
numerical
method
to
estimatethe
state
variablesHistorical
perspectiveGenerally
proposed
by
Rudolf
Emil
Kalman
in1960It
is
developed
primarily
for
the
Apollo
spaceprogram
to
solve
the
spacecraft
navigationproblemIt
is
now
widely
used
in
many
military
or
civilareas
such
as
target
tracking,
navigation,optimal
control
etc.2.7
Discrete
Kalman
Filter
An
Example
of
Kalman
Filter
ProblemTo
estimate
the
temperature
of
a
room
withyour
prediction
and
a
thermometer:k:
time
index.A:
system
matrix;
B:
input
matrix;
C:
output
matrix:
state
vector
of
the
system;u:
known
input
vector
to
the
system,
often
let
to
bz:
measured
output
vector.w:
system
noise
vector;v:
observation
(measurement)
noise
vector.System
ModelState
equation
and
measurement
equationNoise
modelwk
and
vk
are
independent
white
noiseswith
Gaussian
distributions.Qk:
Covariance
matrix
(non-negative
definite)
ofsystem
noise
at
instant
k.Rk:
Covariance
matrix
(positive
definite)
ofmeasurement
noise
at
instant
k.Basic
Idea
of
Kalman
FilterRecursive
architecture
of
discrete
KalmanStatepredictionfilterState
estimation
oflast
instant
(known)CurrentmeasurementPrediction
ofcurrent
state(prior
estimation)StateupdatingEstimation
of
currentstate
(posteriorestimation)To
the
nextfilter
period
The
central
problem
of
discrete
Kalmanfilter
is
to
determine
the
Kalman
gain
matrixKkDeduction
of
the
Kalman
Gain
MatrixCovariance
matrix
of
state
estimation
errorCovariance
matrix
of
a
prior
estimation
errorCovariance
matrix
of
posterior
estimation
errorUpdating
of
the
prior
estimationwhere is
the
measurement
innovation(or
residual)
at
instant
k.
It
reflectdiscrepancy
between
the
predicted
and
actualmeasurements.Kalman
gain
matrixThe
Kk
that
minimizing
the
Pk|kIntuitive
interpretation
of
the
Kalman
gainKk
indicates
the
degree
to
update
the
prediction
wthe
measurement
innovationAs
the
measurement
error
covariance
Rk
approaches
zero,
the
Kk
weights
the
residual
moreheavily.As
the
prior
estimation
error
covariance
Pk|k-1approaches
zero,
the
Kk
weights
the
residual
less.
Recursive
Process
of
State
EstimationError
Covariance
MatrixPrediction
of
the
prior
estimation
errorcovariance
()Posterior
estimation
error
covariance(
)Discrete
Kalman
Filtering
AlgorithmOriginal
state &
covariance
matrixStatepredictionCovariance
matrixpredictionKalman
gainmatrixStateupdatingCovariance
matrixupdatingCharacteristics
of
Kalman
FilterState
space
descriptions
of
systemMulti-dimensional
stateRecursive
algorithmNumerical
solution
of
filter
Suitable
for
non-stationary
(time
variant)
st(signal)MMSE
estimation
Optimal
linear
estimation
for
the
state
oflinear
system
with
Gaussian
white
systemand
observation
noiseSuitable
for
the
implementation
by
computerSimulation
Examples
of
Kalman
Filter
Example
1:
estimation
the
states
(positionand
velocity)
of
a
moving
object
with
uniformvelocity
(without
system
noise)System
equation
and
measurement
equationSimulation
settingsMeasurement
noise
is
a
Gaussian
white
noise;Actual
state:Original
estimationExamining
the
simulation
results
with
differenoise
model■Position
estimation
resultPositionestimation
Actual
positionMeasured
positionPositionTimePosition
estimation
errorPosition
estimation
errorPosition
measurementerrorPosition
errorTimeVelocity
estimation
resultVelocityestimationActual
velocityVelocityTime■Position
estimation
result
(more
belief
onmeasurement)Positionestimation
Actual
positionMeasured
positionPositionTimePosition
estimation
errorPosition
estimation
errorPosition
measurementerrorPosition
errorTimeVelocity
estimation
resultVelocityestimationActual
velocityVelocityTime■Position
estimation
result
(more
belief
onprediction)Positionestimation
Actual
positionMeasured
positionPositionTimePosition
estimation
errorPosition
estimation
errorPosition
measurement
errorPosition
errorTimeVelocity
estimation
resultVelocity
estimationActual
velocityVelocityTime■Position
estimation
resultPosition
estimationActual
positionMeasured
positionPositionTimePosition
estimation
errorPosition
estimation
errorPosition
measurement
errorPosition
errorTimeVelocity
estimation
resultVelocity
estimationActual
velocityVelocityTimeExample
2:
tracking
maneuvered
targetSystem
equation
and
measurement
equationSimulation
settingsMeasurement
noise
and
system
noise
areindependent
Gaussian
white
noises;Actual
state:Original
estimationExamining
the
tracking
result
with
accuratenoise
modelTracking
resultPosition
estimationActual
positionMeasured
positionPositionTimeComments
on
Kalman
Filter
The
stable
Kalman
filter
of
stationaryprocess
with
Gaussian
white
noise
issame
as
the
Wiener
filterKalman
filter
with
non-Gaussian
noiseApplicableSuboptimalKalman
filter
with
colored
noiseExtended
Kalman
filter
(EKF)Nonlinear
systemLinearized
with
Taylor
seriesSub-optimal
(after
linearization,
noises
arenon-Gaussian)Data
association
in
target
trackingSingle
target
tracking
with
multi-measurement
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公設(shè)備購銷合同專業(yè)版
- 小產(chǎn)權(quán)房買賣合同參考范本
- 農(nóng)村房屋繼承協(xié)議書樣式
- 工程委托設(shè)計(jì)合同示范
- 代征稅款委托協(xié)議樣本
- 合肥市建筑材料購銷合同
- 員工勞動(dòng)合同范本規(guī)范文本
- 員工購房抵押貸款合同范本
- 彩色鋼板工程承包合同模板
- 2024年農(nóng)村土地買賣協(xié)議書范本
- 湖北省鄂東南省級(jí)示范高中教育教學(xué)改革聯(lián)盟2023-2024學(xué)年高一上學(xué)期期中聯(lián)考政治試題
- 海水淡化處理方案
- 福建省廈門市翔安區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期中英語試題
- 學(xué)生對(duì)學(xué)校滿意度評(píng)價(jià)表
- 化工項(xiàng)目國(guó)民經(jīng)濟(jì)分析 化工項(xiàng)目技術(shù)經(jīng)濟(jì)
- 計(jì)算與人工智能概論智慧樹知到課后章節(jié)答案2023年下湖南大學(xué)
- 小學(xué)一年級(jí)下冊(cè)數(shù)學(xué)期末考試質(zhì)量分析及試卷分析
- 原材料情況說明范本
- 疲勞駕駛安全教育內(nèi)容
- ICH技術(shù)指導(dǎo)原則概述
- 15D503利用建筑物金屬體做防雷及接地裝置安裝圖集
評(píng)論
0/150
提交評(píng)論