2024屆新疆昌吉回族自治州木壘縣中高一數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第1頁
2024屆新疆昌吉回族自治州木壘縣中高一數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第2頁
2024屆新疆昌吉回族自治州木壘縣中高一數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第3頁
2024屆新疆昌吉回族自治州木壘縣中高一數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第4頁
2024屆新疆昌吉回族自治州木壘縣中高一數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆新疆昌吉回族自治州木壘縣中高一數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.香農(nóng)定理是所有通信制式最基本的原理,它可以用香農(nóng)公式來表示,其中是信道支持的最大速度或者叫信道容量,是信道的帶寬(),S是平均信號功率(),是平均噪聲功率().已知平均信號功率為,平均噪聲功率為,在不改變平均信號功率和信道帶寬的前提下,要使信道容量增大到原來的2倍,則平均噪聲功率約降為()A. B.C. D.2.已知函數(shù)的定義域為,且滿足對任意,有,則函數(shù)()A. B.C. D.3.在正六棱柱任意兩個頂點的連線中與棱AB平行的條數(shù)為()A.2 B.3C.4 D.54.函數(shù)=的部分圖像如圖所示,則的單調(diào)遞減區(qū)間為A. B.C. D.5.函數(shù)(且)的圖象一定經(jīng)過的點是()A. B.C. D.6.已知函數(shù),若對一切,都成立,則實數(shù)a的取值范圍為()A. B.C. D.7.半徑為的半圓卷成一個圓錐,則它的體積是()A. B.C. D.8.已知函數(shù),若,,,則()A. B.C. D.9.已知函數(shù)f(x)=(a∈R),若函數(shù)f(x)在R上有兩個零點,則a的取值范圍是()A.(-∞,-1) B.(-∞,1)C.(-1,0) D.[-1,0)10.已知x>0,y>0,且x+2y=2,則xy()A.有最大值為1 B.有最小值為1C.有最大值為 D.有最小值為二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.設(shè)函數(shù),若函數(shù)在上的最大值為M,最小值為m,則______12.如圖,、、、分別是三棱柱的頂點或所在棱的中點,則表示直線與是異面直線的圖形有______.13.已知點在直線上,則的最小值為______14.已知向量,若,則m=____.15.已知,則的值為______三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知集合,.(1)若,求;(2)若,求實數(shù)的取值范圍.17.已知定義在上的函數(shù)是奇函數(shù)(1)求實數(shù);(2)若不等式恒成立,求實數(shù)的取值范圍18.已知函數(shù).(1)求其最小正周期和對稱軸方程;(2)當時,求函數(shù)的單調(diào)遞減區(qū)間和值域.19.函數(shù)的部分圖像如圖所示(1)求的解析式;(2)已知函數(shù)求的值域20.已知函數(shù)(1)求函數(shù)的最小正周期;(2)求函數(shù)的對稱軸和對稱中心;(3)若,,求的值21.求下列函數(shù)的解析式(1)已知是一次函數(shù),且滿足,求;(2)若函數(shù),求

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】利用題設(shè)條件,計算出原信道容量的表達式,再列出在B不變時用所求平均噪聲功率表示的信道容量的表達式,最后列式求解即得.【詳解】由題意可得,,則在信道容量未增大時,信道容量為,信道容量增大到原來2倍時,,則,即,解得,故選:A2、C【解析】根據(jù)已知不等式可以判斷函數(shù)的單調(diào)性,再結(jié)合四個選項進行判斷即可.【詳解】因為,所以由,構(gòu)造新函數(shù),因此有,所以函數(shù)是增函數(shù).A:,因為,所以不符合增函數(shù)的性質(zhì),故本選項不符合題意;B:,當時,函數(shù)單調(diào)遞減,故本選項不符合題意;C:,顯然符合題意;D:,因為,所以不符合增函數(shù)的性質(zhì),故本選項不符合題意,故選:C3、D【解析】作出幾何體的直觀圖觀察即可.【詳解】解:連接CF,C1F1,與棱AB平行的有,共有5條,故選:D.4、D【解析】由五點作圖知,,解得,,所以,令,解得<<,,故單調(diào)減區(qū)間為(,),,故選D.考點:三角函數(shù)圖像與性質(zhì)5、D【解析】由函數(shù)解析式知當時無論參數(shù)取何值時,圖象必過定點即知正確選項.【詳解】由函數(shù)解析式,知:當時,,即函數(shù)必過,故選:D.【點睛】本題考查了指數(shù)型函數(shù)過定點,根據(jù)解析式分析自變量取何值時函數(shù)值不隨參數(shù)變化而變化,此時所得即為函數(shù)的定點.6、C【解析】將,成立,轉(zhuǎn)化為,對一切成立,由求解即可.【詳解】解:因為函數(shù),若對一切,都成立,所以,對一切成立,令,所以,故選:C【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;.7、C【解析】求出扇形的弧長,然后求出圓錐的底面周長,轉(zhuǎn)化為底面半徑,求出圓錐的高,然后求出體積.【詳解】設(shè)底面半徑為r,則,所以.所以圓錐高.所以體積.故選:C.【點睛】本題考查圓錐的性質(zhì)及體積,圓錐問題抓住兩個關(guān)鍵點:(1)圓錐側(cè)面展開圖的扇形弧長等于底面周長;(2)圓錐底面半徑r、高h、母線l組成直角三角形,滿足勾股定理,本題考查這兩種關(guān)系的應(yīng)用,屬于簡單題.8、A【解析】可判斷在單調(diào)遞增,根據(jù)單調(diào)性即可判斷.【詳解】當時,單調(diào)遞增,,,,.故選:A.9、D【解析】當x>0時,f(x)有一個零點,故當x≤0時只有一個實根,變量分離后進行計算可得答案.【詳解】當x>0時,f(x)=3x-1有一個零點x=.因此當x≤0時,f(x)=ex+a=0只有一個實根,∴a=-ex(x≤0),函數(shù)y=-ex單調(diào)遞減,則-1≤a<0.故選:D【點睛】本題考查由函數(shù)零點個數(shù)確定參數(shù)的取值,考查指數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.10、C【解析】利用基本不等式的性質(zhì)進行求解即可【詳解】,,且,(1),當且僅當,即,時,取等號,故的最大值是:,故選:【點睛】本題主要考查基本不等式的應(yīng)用,注意基本不等式成立的條件二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、2【解析】令,證得為奇函數(shù),從而可得在的最大值和最小值之和為0,進而可求出結(jié)果.【詳解】設(shè),定義域為,則,所以,即,所以為奇函數(shù),所以在的最大值和最小值之和為0,令,則因為,所以函數(shù)的最大值為,最小值為,則,∴故答案為:2.12、②④【解析】圖①中,直線,圖②中面,圖③中,圖④中,面【詳解】解:根據(jù)題意,在①中,且,則四邊形是平行四邊形,有,不是異面直線;圖②中,、、三點共面,但面,因此直線與異面;在③中,、分別是所在棱的中點,所以且,故,必相交,不是異面直線;圖④中,、、共面,但面,與異面所以圖②④中與異面故答案為:②④.13、2【解析】由點在直線上得上,且表示點與原點的距離∴的最小值為原點到直線的距離,即∴的最小值為2故答案為2點睛:本題考查了數(shù)學(xué)的化歸與轉(zhuǎn)換能力,首先要知道一些式子的幾何意義,比如本題表示點和原點的兩點間距離,所以本題轉(zhuǎn)化為已知直線上的點到定點的距離的最小值,即定點到直線的距離最小.14、-1【解析】求出的坐標,由向量共線時坐標的關(guān)系可列出關(guān)于的方程,從而可求出的值.【詳解】解:∵,∴,∵,,∴,解得.故答案為:-115、2【解析】根據(jù)給定條件把正余弦的齊次式化成正切,再代入計算作答.【詳解】因,則,所以的值為2.故答案為:2三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1);(2).【解析】(1)根據(jù)并集的概念運算可得結(jié)果;(2)分類討論集合是否為空集,根據(jù)交集結(jié)果列式可得答案.【詳解】(1)當時,,所以.(2)因為,(i)當,即時,,符合題意;(ii)當時,,解得或.綜上所述,實數(shù)的取值范圍是.【點睛】易錯點點睛:容易漏掉集合為空集的情況.17、(1)1(2)【解析】(1)根據(jù)奇函數(shù)的性質(zhì),,求參數(shù)后,并驗證;(2)結(jié)合函數(shù)單調(diào)性和奇函數(shù)的性質(zhì),不等式變形得恒成立,再根據(jù)判別式求實數(shù)的取值范圍【小問1詳解】∵是定義域為的奇函數(shù),∴,∴,則,滿足,所以成立.【小問2詳解】中,函數(shù)單調(diào)遞減,單調(diào)遞增,故在上單調(diào)遞增原不等式化為,∴即恒成立,∴,解得18、(1)最小正周期為,對稱軸方程;(2)單調(diào)遞減區(qū)間為,值域為.【解析】(1)利用倍角公式、輔助角公式化簡函數(shù),結(jié)合正弦函數(shù)的性質(zhì)計算作答.(2)確定函數(shù)的相位范圍,再借助正弦函數(shù)的性質(zhì)計算作答.【小問1詳解】依題意,,則,由解得:,所以,函數(shù)的最小正周期為,對稱軸方程為.【小問2詳解】由(1)知,因,則,而正弦函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,由解得,由解得,因此,在上單調(diào)遞減,在上單調(diào)遞增,,而,即,所以函數(shù)單調(diào)遞減區(qū)間是,值域為.19、(1)(2)【解析】(1)根據(jù)圖像和“五點法”即可求出三角函數(shù)的解析式;(2)根據(jù)三角恒等變換可得,結(jié)合x的取值范圍和正弦函數(shù)的性質(zhì)即可得出結(jié)果.小問1詳解】由圖像可知的最大值是1,所以,當時,,可得,又,所以當時,有最小值,所以,解得,所以;【小問2詳解】,由可得所以,所以.20、(1);(2),;(3)【解析】(1)利用三角函數(shù)的恒等變換,對函數(shù)的表達式進行化簡,進而可以求出周期;(2)利用正弦函數(shù)對稱軸與對稱中心的性質(zhì),可以求出函數(shù)的對稱軸和對稱中心;(3)利用題中給的關(guān)系式可以求出和,然后將展開求值即可【詳解】(1).所以函數(shù)的最小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論