版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
昌都市重點中學2024屆高一數(shù)學第一學期期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知正方體ABCD-ABCD中,E、F分別為BB、CC的中點,那么異面直線AE與DF所成角的余弦值為A. B.C. D.2.4×100米接力賽是田徑運動中的集體項目.一根小小的木棒,要四個人共同打造一個信念,一起拼搏,每次交接都是信任的傳遞.甲、乙、丙、丁四位同學將代表高一年級參加校運會4×100米接力賽,教練組根據(jù)訓練情況,安排了四人的交接棒組合.已知該組合三次交接棒失誤的概率分別是p1,p2,A.p1pC.1-p13.設a為實數(shù),“”是“對任意的正數(shù)x,”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件4.的值是A. B.C. D.5.當時,函數(shù)(,),取得最小值,則關于函數(shù),下列說法錯誤的是()A.是奇函數(shù)且圖象關于點對稱B.偶函數(shù)且圖象關于點(π,0)對稱C.是奇函數(shù)且圖象關于直線對稱D.是偶函數(shù)且圖象關于直線對稱6.某人用如圖所示的紙片,沿折痕折后粘成一個四棱錐形的“走馬燈”,正方形做燈底,且有一個三角形面上寫上了“年”字,當燈旋轉時,正好看到“新年快樂”的字樣,則在①、②、③處應依次寫上A.快、新、樂 B.樂、新、快C.新、樂、快 D.樂、快、新7.已知偶函數(shù)在區(qū)間內單調遞增,若,,,則的大小關系為()A. B.C. D.8.已知弧長為cm的弧所對的圓心角為,則這條弧所在的扇形面積為()cm2A. B.C. D.9.下列函數(shù)既是定義域上的減函數(shù)又是奇函數(shù)的是A. B.C. D.10.設,,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù).(1)當函數(shù)取得最大值時,求自變量x的集合;(2)完成下表,并在平面直角坐標系內作出函數(shù)在的圖象.x0y12.已知函數(shù),若,則實數(shù)的取值范圍為______.13.表示一位騎自行車和一位騎摩托車的旅行者在相距80km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數(shù)關系,有人根據(jù)函數(shù)圖象,提出了關于這兩個旅行者的如下信息:①騎自行車者比騎摩托車者早出發(fā)3h,晚到1h;②騎自行車者是變速運動,騎摩托車者是勻速運動;③騎摩托車者在出發(fā)1.5h后追上了騎自行車者;④騎摩托車者在出發(fā)1.5h后與騎自行車者速度一樣其中,正確信息的序號是________14.已知函數(shù),則下列說法正確的有________.①的圖象可由的圖象向右平移個單位長度得到②在上單調遞增③在內有2個零點④在上的最大值為15.若函數(shù)y=是函數(shù)的反函數(shù),則_________________16.已知角的終邊經(jīng)過點,則的值為_______________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.對于函數(shù),若在其定義域內存在實數(shù),,使得成立,則稱是“躍點”函數(shù),并稱是函數(shù)的1個“躍點”(1)求證:函數(shù)在上是“1躍點”函數(shù);(2)若函數(shù)在上存在2個“1躍點”,求實數(shù)的取值范圍;(3)是否同時存在實數(shù)和正整數(shù)使得函數(shù)在上有2022個“躍點”?若存在,請求出和滿足的條件;若不存在,請說明理由18.已知向量m=(cos,sin),n=(2+sinx,2-cos),函數(shù)=m·n,x∈R.(1)求函數(shù)的最大值;(2)若且=1,求值.19.在△中,已知,直線經(jīng)過點(Ⅰ)若直線:與線段交于點,且為△外心,求△的外接圓的方程;(Ⅱ)若直線方程為,且△的面積為,求點的坐標20.已知函數(shù)(1)求的最小正周期、最大值、最小值;(2)求函數(shù)的單調區(qū)間;21.已知函數(shù).(1)求的定義域;(2)若函數(shù),且對任意的,,恒成立,求實數(shù)a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】連接DF,因為DF與AE平行,所以∠DFD即為異面直線AE與DF所成角的平面角,設正方體的棱長為2,則FD=FD=,由余弦定理得cos∠DFD==.2、C【解析】根據(jù)對立事件和獨立事件求概率的方法即可求得答案.【詳解】由題意,三次交接棒不失誤的概率分別為:1-p1,1-故選:C.3、A【解析】根據(jù)題意利用基本不等式分別判斷充分性和必要性即可.【詳解】若,因為,則,當且僅當時等號成立,所以充分性成立;取,因為,則,當且僅當時等號成立,即時,對任意的正數(shù)x,,但,所以必要性不成立,綜上,“”是“對任意的正數(shù)x,”的充分非必要條件.故選:A.4、B【解析】由余弦函數(shù)的二倍角公式把等價轉化為,再由誘導公式進一步簡化為,由此能求出結果詳解】,故選B【點睛】本題考查余弦函數(shù)的二倍角公式的應用,解題時要認真審題,仔細解答,注意誘導公式的靈活運用,屬于基礎題.5、C【解析】根據(jù)正弦型函數(shù)的性質逐一判斷即可.【詳解】因為當時,函數(shù)取得最小值,所以,因為,所以令,即,所以,設,因為,所以函數(shù)是奇函數(shù),因此選項B、D不正確;因為,,所以,因此函數(shù)關于直線對稱,因此選項A不正確,故選:C6、A【解析】根據(jù)四棱錐圖形,正好看到“新年快樂”的字樣,可知順序為②年①③,即可得出結論【詳解】根據(jù)四棱錐圖形,正好看到“新年快樂”的字樣,可知順序為②年①③,故選A【點睛】本題考查四棱錐的結構特征,考查學生對圖形的認識,屬于基礎題.7、D【解析】先利用偶函數(shù)的對稱性判斷函數(shù)在區(qū)間內單調遞減,結合偶函數(shù)定義得,再判斷,和的大小關系,根據(jù)單調性比較函數(shù)值的大小,即得結果.【詳解】偶函數(shù)的圖象關于y軸對稱,由在區(qū)間內單調遞增可知,在區(qū)間內單調遞減.,故,而,,即,故,由單調性知,即.故選:D.8、C【解析】根據(jù)弧長計算出半徑,再利用面積公式得到答案.【詳解】弧長為cm的弧所對的圓心角為,則故選【點睛】本題考查了扇形面積,求出半徑是解題的關鍵.9、C【解析】根據(jù)函數(shù)的單調性與奇偶性對選項中的函數(shù)進行判斷即可【詳解】對于A,f(x)=|x|,是定義域R上的偶函數(shù),∴不滿足條件;對于B,f(x),在定義域(﹣∞,0)∪(0,+∞)上是奇函數(shù),且在每一個區(qū)間上是減函數(shù),不能說函數(shù)在定義域上是減函數(shù),∴不滿足條件;對于C,f(x)=﹣x3,在定義域R上是奇函數(shù),且是減函數(shù),∴滿足題意;對于D,f(x)=x|x|,在定義域R上是奇函數(shù),且是增函數(shù),∴不滿足條件故答案為:C【點睛】本題主要考查函數(shù)的單調性和奇偶性,意在考查學生對這些知識的掌握水平和分析推理能力.10、A【解析】先計算得到,,再利用展開得到答案.詳解】,,;,;故選:【點睛】本題考查了三角函數(shù)值的計算,變換是解題的關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、(1)(2)答案見解析【解析】(1)由三角恒等變換求出解析式,再求得最大值時的x的集合,(2)由五點法作圖,列出表格,并畫圖即可.【小問1詳解】令,函數(shù)取得最大值,解得,所以此時x的集合為.【小問2詳解】表格如下:x0y11作圖如下,12、或【解析】令,分析出函數(shù)為上的減函數(shù)且為奇函數(shù),將所求不等式變形為,可得出關于的不等式,解之即可.【詳解】令,對任意的,,故函數(shù)的定義域為,因為,則,所以,函數(shù)為奇函數(shù),當時,令,由于函數(shù)和在上均為減函數(shù),故函數(shù)在上也為減函數(shù),因為函數(shù)在上為增函數(shù),故函數(shù)在上為減函數(shù),所以,函數(shù)在上也為減函數(shù),因為函數(shù)在上連續(xù),則在上為減函數(shù),由可得,即,所以,,即,解得或.故答案為:或.13、①②③【解析】看時間軸易知①正確;騎摩托車者行駛的路程與時間的函數(shù)圖象是直線,所以是勻速運動,而騎自行車者行駛的路程與時間的函數(shù)圖象是折線,所以是變速運動,因此②正確;兩條曲線的交點的橫坐標對應著4.5,故③正確,④錯誤故答案為①②③.點睛:研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反映了函數(shù)的所有性質,在研究函數(shù)問題時要時時刻刻想到函數(shù)的圖象,學會從函數(shù)圖象上去分析問題、尋找解決問題的方法14、②③【解析】化簡函數(shù),結合三角函數(shù)的圖象變換,可判定①不正確;根據(jù)正弦型函數(shù)的單調的方法,可判定②正確;令,求得,可判定③正確;由,得到,結合三角函數(shù)的性質,可判定④正確.【詳解】由函數(shù),對于①中,將函數(shù)的圖象向右平移個單位長度,得到,所以①不正確;對于②中,令,解得,當時,可得,即函數(shù)在上單調遞增,所以函數(shù)在上單調遞增,所以②正確;對于③中,令,可得,解得,當時,可得;當時,可得,所以內有2個零點,所以③正確;對于④中,由,可得,當時,即時,函數(shù)取得最大值,最大值為,所以④不正確.故答案為:②③.15、0【解析】可得,再代值求解的值即可【詳解】的反函數(shù)為,則,則,則.故答案為:016、【解析】到原點的距離.考點:三角函數(shù)的定義.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解(2)(3)存在,或或【解析】(1)將要證明問題轉化為方程在上有解,構造函數(shù)轉化為函數(shù)零點問題,結合零點存在性定理可證;(2)原問題等價于方程在由兩個根,然后構造二次函數(shù),轉化為零點分布問題可解;(3)將問題轉化為方程在上有2022個實數(shù)根,再轉化為兩個函數(shù)交點個數(shù)問題,然后可解.【小問1詳解】因為整理得,令,因為,所以在區(qū)間有零點,即存在,使得,即存在,使得,所以,函數(shù)在上是“1躍點”函數(shù)【小問2詳解】函數(shù)在上存在2個“1躍點”方程在上有兩個實數(shù)根,即在上有兩個實數(shù)根,令,則解得或,所以的取值范圍是【小問3詳解】由,得,即因為函數(shù)在上有2022個“躍點”,所以方程在上有2022個解,即函數(shù)與的圖象有2022個交點.所以或或即或或18、(1)f(x)的最大值是4(2)-【解析】(1)先由向量數(shù)量積坐標表示得到函數(shù)的三角函數(shù)解析式,再將其化簡得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合條件的x的三角函數(shù)值,再有余弦的和角公式求的值【詳解】(1)因為f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因為f(x)=1,所以sin=.又因為x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【點睛】本題考查平面向量的綜合題19、(Ⅰ)(Ⅱ)或【解析】(Ⅰ)先求出直線的方程,進而得到D點坐標,為直徑長,從而得到△的外接圓的方程;(Ⅱ)由題意可得,,從而解得點的坐標【詳解】(Ⅰ)解法一:由已知得,直線的方程為,即,聯(lián)立方程組得:,解得,又,△的外接圓的半徑為∴△的外接圓的方程為.解法二:由已知得,,且為△的外心,∴△為直角三角形,為線段的中點,∴圓心,圓的半徑,∴△的外接圓的方程為.或線段即為△的外接圓的直徑,故有△的外接圓的方程為,即(Ⅱ)設點的坐標為,由已知得,,所在直線方程,到直線的距離,①又點的坐標為滿足方程,即②聯(lián)立①②解得:或,∴點的坐標為或【點睛】本題考查了圓的方程,直線的交點,點到直線的距離,考查了邏輯推理能力與計算能力,屬于基礎題.20、(1),最大值1,最小值-1;(2)在上單調遞增;上單調遞減;【解析】(1)利用兩角差余弦公式、兩角和正弦公式化簡函數(shù)式,進而求的最小正周期、最大值、最小值;(2)利用的性質求函數(shù)的單調區(qū)間即可.【詳解】(1),∴,且最大值、最小值分別為1,-1;(2)由題意,當時,單調遞增,∴,,單調遞增;當時,單調遞減,∴,,單調遞減;綜上,當,單調遞增;,單調遞減;【點睛】關鍵點點睛:應用兩角和差公式化簡三角函數(shù)式并求最小正周期、最值;根據(jù)性質確定三角函數(shù)的單調區(qū)間.21、(1).(2)(2,+∞).【解析】(1)使對數(shù)式有意義,即得定義域;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐廳經(jīng)理個人工作計劃
- 個人計劃幼兒園目標
- 關愛殘疾兒童工作計劃殘疾兒童幫扶計劃
- 出納下月工作計劃范文
- 2025~年第二學期高二化學備課組計劃
- 年小學安全教育工作計劃
- 高一美術教學工作計劃
- 有出納崗位工作計劃
- 4年終綜合管理崗位個人工作計劃范文
- 《氧氣吸入法》課件
- 2023年天津市高中物理學業(yè)水平試題真題含答案
- 高中數(shù)學-高三專題復習裂項求和教學設計學情分析教材分析課后反思
- 2021-2022學年廣東省廣州市白云區(qū)九年級(上)期末語文試卷
- 植樹問題整理與復習
- 閉門器買賣合同
- 沉井與沉管法施工-沉井法施工
- 鋁合金門窗陽臺欄桿工程施工設計方案
- 南藝 28685 設計原理考點(本科)
- 檔案格式封皮
- GB/T 41621-2022科學技術研究項目評價實施指南開發(fā)研究項目
- GB/T 9126-2008管法蘭用非金屬平墊片尺寸
評論
0/150
提交評論