下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
6.3.3平面向量加、減運算的坐標表示課后·訓練提升基礎鞏固1.已知向量a=(2,4),a+b=(3,2),則b=()A.(1,-2) B.(1,2) C.(5,6) D.(2,0)解析b=(3,2)-a=(3,2)-(2,4)=(1,-2).答案A2.在平行四邊形ABCD中,A(1,2),B(3,5),AD=(-1,2),則AC+BD=(A.(-2,4) B.(4,6) C.(-6,-2) D.(-1,9)解析在平行四邊形ABCD中,因為A(1,2),B(3,5),所以AB=(2,3).又AD=(-1,2),所以AC=AB+AD=(1,5),BD=AD-AB=(-3,-1),所以AC答案A3.已知a-b=(2,4),a+b=(4,-10),則a等于()A.(-3,-3) B.(3,3) C.(-3,3) D.(3,-3)解析由a-b=(2,4),a+b=(4,-10),得2a=(6,-6),因此a=(3,-3).答案D4.向量AB=(7,-5),將AB按向量a=(3,6)平移后得向量A'B',則A'A.(10,1) B.(4,-11) C.(7,-5) D.(3,6)解析A'B'與AB方向相同且長度相等,故A答案C5.若A(2,-1),B(4,2),C(1,5),則AB+BC=解析∵A(2,-1),B(4,2),C(1,5),∴AB=(2,3),BC=(-3,3),∴AB+BC=(2,3)+(-3,3)=(-答案(-1,6)6.已知平面上三點A(2,-4),B(0,6),C(-8,10),則12AC-14BC=答案(-3,6)(3,3)7.已知A(-2,4),B(3,-1),C(-3,-4),CM=CA,CN=CB,解析CM=CA=(1,8),CN=CB=(6,3),MN=CN-CM=答案(5,-5)8.已知向量a=(2m,m),b=(n,-2n),若a+b=(9,-8)(m,n∈R),則m-n的值為.
解析∵a+b=(2m+n,m-2n)=(9,-8),∴2m+n=9,m-2答案-39.已知a=AB,點B的坐標為(1,0),b=(-9,12),c=(-2,2),且a=b-c,求點A的坐標.解∵b=(-9,12),c=(-2,2),∴b-c=(-9,12)-(-2,2)=(-7,10),即a=(-7,10)=AB.又B(1,0),設點A的坐標為(x,y),則AB=(1-x,0-y)=(-7,10),∴1即點A的坐標為(8,-10).10.已知點A(3,-4)與B(-1,2),點P在直線AB上,且|AP|=|PB|,求點P的坐標.解設點P的坐標為(x,y),|AP|=|PB|.當點P在線段AB上時,AP=∴(x-3,y+4)=(-1-x,2-y),∴x-3=∴點P的坐標為(1,-1).當P在線段AB延長線上時,AP=-PB.∴(x-3,y+4)=-(-1-x,2-y),∴x-3=1+綜上所述,點P的坐標為(1,-1).能力提升1.已知點A(-1,-2),B(2,3),C(-2,0),D(x,y),且AC=BD,則x+y=解析∵AC=(-2,0)-(-1,-2)=(-1,2),BD=(x,y)-(2,3)=(x-2,y-3),又BD=AC,即(x-2,y-3)=(∴x-2=-1,y答案62.已知點A(1,1),B12,32,且AB=(sinα,cosβ),α,β∈-π2,π2解析因為AB=-12,1所以sinα=-12,且cosβ=1因為α,β∈-π2,π2,所以α=-π6,β所以α+β=π6或-π答案π6或-3.已知點A(-1,2),B(2,8)及AC=AB,DA=-BA,求點C,D解設點C(x1,y1),D(x2,y2),由題意可得AC=(x1+1,y1-2),AB=(3,6),DA=(-1-x2,2-y2),BA=(-3,-6).∵AC=AB,∴(x1+1,y1-2)=(3,6),(-1-x2,2-y2)=(3,6),由x1+1=3由-1-∴點C,D的坐標分別為(2,8)和(-4,-4),∴CD=(-6,-12).4.已知點O(0,0),A(1,2).(1)若B(3t+1,3t+2),OP=OA+AB,則t為何值時,點P在x軸上?點P在y軸上?(2)若點B(4,5),P(1+3t,2+3t),則四邊形OABP能為平行四邊形嗎?若能,求出t的值;若不能,請說明理由.解(1)OP=OA+AB=(1,2)+(3t,3t)=(1+3t,2若點P在x軸上,則2+3t=0,∴t=-23若點P在y軸上,則1+3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版設備砂石料購銷與設備性能優(yōu)化協(xié)議3篇
- 二零二五年度人事部人才與專家工作辦公室員工福利保障合同3篇
- 二零二五年度圖書館圖書修復與保護工程合同
- 個體物流配送員勞動協(xié)議格式(2024年版)一
- 二零二五版木材進口關(guān)稅減免申請服務合同4篇
- 二零二五年度土地利用現(xiàn)狀變更測量合同
- 二零二五年度城市公共充電樁運營管理合同4篇
- 二零二五版大數(shù)據(jù)中心項目合作協(xié)議4篇
- 2025年度美容院連鎖加盟區(qū)域代理權(quán)及市場獨占協(xié)議
- 2025年度企業(yè)培訓項目財務結(jié)算合同范本4篇
- 2024生態(tài)環(huán)境相關(guān)法律法規(guī)考試試題
- 有砟軌道施工工藝課件
- 兩辦意見八硬措施煤礦安全生產(chǎn)條例宣貫學習課件
- 40篇短文搞定高中英語3500單詞
- 人教版高中數(shù)學必修二《第九章 統(tǒng)計》同步練習及答案解析
- 兒科護理安全警示教育課件
- 三年級下冊口算天天100題
- 國家中英文名稱及代碼縮寫(三位)
- 人員密集場所消防安全培訓
- 液晶高壓芯片去保護方法
- 拜太歲科儀文檔
評論
0/150
提交評論