




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024學(xué)年四川省樂至縣達(dá)標(biāo)名校中考數(shù)學(xué)押題卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉(zhuǎn)動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m2.估計﹣2的值應(yīng)該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間3.《九章算術(shù)》是我國古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動著計算機(jī)的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”如圖所示,請根據(jù)所學(xué)知識計算:圓形木材的直徑AC是()A.13寸 B.20寸 C.26寸 D.28寸4.下列博物院的標(biāo)識中不是軸對稱圖形的是()A. B.C. D.5.據(jù)相關(guān)報道,開展精準(zhǔn)扶貧工作五年以來,我國約有55000000人擺脫貧困,將55000000用科學(xué)記數(shù)法表示是()A.55×106 B.0.55×108 C.5.5×106 D.5.5×1076.如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣27.如圖是由5個相同的小正方體組成的立體圖形,這個立體圖形的俯視圖是()A. B. C. D.8.一組數(shù)據(jù):3,2,5,3,7,5,x,它們的眾數(shù)為5,則這組數(shù)據(jù)的中位數(shù)是()A.2 B.3 C.5 D.79.下列關(guān)于統(tǒng)計與概率的知識說法正確的是()A.武大靖在2018年平昌冬奧會短道速滑500米項目上獲得金牌是必然事件B.檢測100只燈泡的質(zhì)量情況適宜采用抽樣調(diào)查C.了解北京市人均月收入的大致情況,適宜采用全面普查D.甲組數(shù)據(jù)的方差是0.16,乙組數(shù)據(jù)的方差是0.24,說明甲組數(shù)據(jù)的平均數(shù)大于乙組數(shù)據(jù)的平均數(shù)10.如圖是我市4月1日至7日一周內(nèi)“日平均氣溫變化統(tǒng)計圖”,在這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.13;13 B.14;10 C.14;13 D.13;14二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.12.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.13.對于實數(shù)a,b,定義運算“*”:a*b=,例如:因為4>2,所以4*2=42﹣4×2=8,則(﹣3)*(﹣2)=___________.14.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.15.若,,則代數(shù)式的值為__________.16.兩圓內(nèi)切,其中一個圓的半徑長為6,圓心距等于2,那么另一個圓的半徑長等于__.17.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.三、解答題(共7小題,滿分69分)18.(10分)某校詩詞知識競賽培訓(xùn)活動中,在相同條件下對甲、乙兩名學(xué)生進(jìn)行了10次測驗,他們的10次成績?nèi)缦拢▎挝唬悍郑赫?、分析過程如下,請補(bǔ)充完整.(1)按如下分?jǐn)?shù)段整理、描述這兩組數(shù)據(jù):成績x學(xué)生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲____________________________________乙114211(2)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:學(xué)生極差平均數(shù)中位數(shù)眾數(shù)方差甲______83.7______8613.21乙2483.782______46.21(3)若從甲、乙兩人中選擇一人參加知識競賽,你會選______(填“甲”或“乙),理由為______.19.(5分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側(cè)),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設(shè)點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標(biāo);若不能,請說明理由.20.(8分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設(shè)點P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.21.(10分)隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).22.(10分)某班為確定參加學(xué)校投籃比賽的任選,在A、B兩位投籃高手間進(jìn)行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.(1)根據(jù)圖中所給信息填寫下表:投中個數(shù)統(tǒng)計平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個班只能在A、B之間選派一名學(xué)生參賽,從投籃穩(wěn)定性考慮應(yīng)該選派誰?請你利用學(xué)過的統(tǒng)計量對問題進(jìn)行分析說明.23.(12分)如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.(1)求證:AE=BF;(2)連接GB,EF,求證:GB∥EF;(3)若AE=1,EB=2,求DG的長.24.(14分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據(jù)正弦來解題,求出∠CAB,進(jìn)而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【題目詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【題目點撥】此題主要考查了解直角三角形的應(yīng)用,解本題的關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.2、A【解題分析】
直接利用已知無理數(shù)得出的取值范圍,進(jìn)而得出答案.【題目詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【題目點撥】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關(guān)鍵.3、C【解題分析】分析:設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解方程即可.詳解:設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解得r=13,∴⊙O的直徑為26寸,故選C.點睛:本題考查垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題4、A【解題分析】
如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進(jìn)行分析即可.【題目詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【題目點撥】此題考查軸對稱圖形的概念,解題的關(guān)鍵在于利用軸對稱圖形的概念判斷選項正誤5、D【解題分析】試題解析:55000000=5.5×107,故選D.考點:科學(xué)記數(shù)法—表示較大的數(shù)6、C【解題分析】
先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【題目詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【題目點撥】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點,三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.7、C【解題分析】
從上面看共有2行,上面一行有3個正方形,第二行中間有一個正方形,故選C.8、C【解題分析】分析:眾數(shù)是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù),一組數(shù)據(jù)可以有多個眾數(shù),也可以沒有眾數(shù);中位數(shù)是指將數(shù)據(jù)按大小順序排列起來形成一個數(shù)列,居于數(shù)列中間位置的那個數(shù)據(jù).根據(jù)定義即可求出答案.詳解:∵眾數(shù)為5,∴x=5,∴這組數(shù)據(jù)為:2,3,3,5,5,5,7,∴中位數(shù)為5,故選C.點睛:本題主要考查的是眾數(shù)和中位數(shù)的定義,屬于基礎(chǔ)題型.理解他們的定義是解題的關(guān)鍵.9、B【解題分析】
根據(jù)事件發(fā)生的可能性的大小,可判斷A,根據(jù)調(diào)查事物的特點,可判斷B;根據(jù)調(diào)查事物的特點,可判斷C;根據(jù)方差的性質(zhì),可判斷D.【題目詳解】解:A、武大靖在2018年平昌冬奧會短道速滑500米項目上可能獲得獲得金牌,也可能不獲得金牌,是隨機(jī)事件,故A說法不正確;B、燈泡的調(diào)查具有破壞性,只能適合抽樣調(diào)查,故檢測100只燈泡的質(zhì)量情況適宜采用抽樣調(diào)查,故B符合題意;C、了解北京市人均月收入的大致情況,調(diào)查范圍廣適合抽樣調(diào)查,故C說法錯誤;D、甲組數(shù)據(jù)的方差是0.16,乙組數(shù)據(jù)的方差是0.24,說明甲組數(shù)據(jù)的波動比乙組數(shù)據(jù)的波動小,不能說明平均數(shù)大于乙組數(shù)據(jù)的平均數(shù),故D說法錯誤;故選B.【題目點撥】本題考查隨機(jī)事件及方差,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.方差越小波動越?。?0、C【解題分析】
根據(jù)統(tǒng)計圖,利用眾數(shù)與中位數(shù)的概念即可得出答案.【題目詳解】從統(tǒng)計圖中可以得出這一周的氣溫分別是:12,15,14,10,13,14,11所以眾數(shù)為14;將氣溫按從低到高的順序排列為:10,11,12,13,14,14,15所以中位數(shù)為13故選:C.【題目點撥】本題主要考查中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的求法是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3:2【解題分析】因為DE∥BC,所以,因為EF∥AB,所以,所以,故答案為:3:2.12、6°【解題分析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.13、-1.【解題分析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案為-1.14、3﹣【解題分析】
首先設(shè)點B的橫坐標(biāo),由點B在拋物線y1=x2(x≥0)上,得出點B的坐標(biāo),再由平行,得出A和C的坐標(biāo),然后由CD平行于y軸,得出D的坐標(biāo),再由DE∥AC,得出E的坐標(biāo),即可得出DE和AB,進(jìn)而得解.【題目詳解】設(shè)點B的橫坐標(biāo)為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【題目點撥】此題主要考查拋物線中的坐標(biāo)求解,關(guān)鍵是利用平行的性質(zhì).15、-12【解題分析】分析:對所求代數(shù)式進(jìn)行因式分解,把,,代入即可求解.詳解:,,,故答案為:點睛:考查代數(shù)式的求值,掌握提取公因式法和公式法進(jìn)行因式分解是解題的關(guān)鍵.16、4或1【解題分析】∵兩圓內(nèi)切,一個圓的半徑是6,圓心距是2,∴另一個圓的半徑=6-2=4;或另一個圓的半徑=6+2=1,故答案為4或1.【題目點撥】本題考查了根據(jù)兩圓位置關(guān)系來求圓的半徑的方法.注意圓的半徑是6,要分大圓和小圓兩種情況討論.17、【解題分析】
根據(jù)上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【題目詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【題目點撥】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達(dá)到抵消的目的.三、解答題(共7小題,滿分69分)18、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由見解析【解題分析】
(1)根據(jù)折線統(tǒng)計圖數(shù)字進(jìn)行填表即可;(2)根據(jù)稽查,中位數(shù),眾數(shù)的計算方法,求得甲成績的極差,中位數(shù),乙成績的極差,眾數(shù)即可;(3)可分別從平均數(shù)、方差、極差三方面進(jìn)行比較.【題目詳解】(1)由圖可知:甲的成績?yōu)椋?5,84,89,82,86,1,86,83,85,86,∴70?x?74無,共0個;75?x?79之間有75,共1個;80?x?84之間有84,82,1,83,共4個;85?x?89之間有89,86,86,85,86,共5個;90?x?94之間和95?x?100無,共0個.故答案為0;1;4;5;0;0;(2)由圖可知:甲的最高分為89分,最低分為75分,極差為89?75=14分;∵甲的成績?yōu)閺牡偷礁吲帕袨椋?5,1,82,83,84,85,86,86,86,89,∴中位數(shù)為(84+85)=84.5;∵乙的成績?yōu)閺牡偷礁吲帕袨椋?2,76,1,1,1,83,87,89,91,96,1出現(xiàn)3次,乙成績的眾數(shù)為1.故答案為14;84.5;1;(3)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定;兩人的平均數(shù)相同且甲的極差小于乙,說明甲成績變化范圍?。颍阂遥碛桑涸?0≤x≤100的分?jǐn)?shù)段中,乙的次數(shù)大于甲.(答案不唯一,理由須支撐推斷結(jié)論)故答案為:甲,兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定.【題目點撥】此題考查折線統(tǒng)計圖,統(tǒng)計表,平均數(shù),中位數(shù),眾數(shù),方差,極差,解題關(guān)鍵在于掌握運算法則以及會用這些知識來評價這組數(shù)據(jù).19、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解題分析】
(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側(cè),根據(jù)二次函數(shù)圖象的性質(zhì)可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結(jié)合A、B兩點的坐標(biāo),利用待定系數(shù)法求出a、b的值,可得拋物線L的表達(dá)式;(2)由C、B兩點的坐標(biāo),利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進(jìn)一步確定拋物線的頂點坐標(biāo);通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界)時h的取值范圍.(3)設(shè)P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【題目詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設(shè)原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當(dāng)x=1時,y=2,如圖1,當(dāng)拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當(dāng)拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設(shè)P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【題目點撥】本題主要考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的圖象與性質(zhì)、二次函數(shù)與一元二次方程的聯(lián)系、全等三角形的判定與性質(zhì)等知識點.解(1)的關(guān)鍵是掌握待定系數(shù)法,解(2)的關(guān)鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關(guān)鍵是證明△BNP≌△PMQ.20、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解題分析】
(1)由點A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)m>6時,同理可得.【題目詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設(shè)直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設(shè)點P的坐標(biāo)為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標(biāo)為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點D(6,1),根據(jù)題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當(dāng)1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當(dāng)m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【題目點撥】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)及勾股定理、三角函數(shù)等知識點.21、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解題分析】
(Ⅰ)利用家庭中擁有1臺移動設(shè)備的人數(shù)除以其所占百分比即可得調(diào)查的學(xué)生人數(shù),將擁有4臺移動設(shè)備的人數(shù)除以總?cè)藬?shù)即可求得m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設(shè)備的學(xué)生人數(shù)所占比例乘以總?cè)藬?shù)1500即可求解.【題目詳解】解:(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為:=50(人),∵×100=31%,∴圖①中m的值為31.故答案為50、31;(Ⅱ)∵這組樣本數(shù)據(jù)中,4出現(xiàn)了16次,出現(xiàn)次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為4;∵將這組數(shù)據(jù)從小到大排列,其中處于中間的兩個數(shù)均為3,有=3,∴這組數(shù)據(jù)的中位數(shù)是3;由條形統(tǒng)計圖可得=3.1,∴這組數(shù)據(jù)的平均數(shù)是3.1.(Ⅲ)1500×18%=410(人).答:估計該校學(xué)生家庭中;擁有3臺移動設(shè)備的學(xué)生人數(shù)約為410人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.22、(1)7,9,7;(2)應(yīng)該選派B;【解題分析】
(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【題目詳解】(1)A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加盟連鎖項目服務(wù)合同范本
- 農(nóng)村小區(qū)搬遷合同范本
- 中學(xué)食堂承包團(tuán)隊合同范本
- 人力股分紅合同范例
- 個人技術(shù)投資合同范本
- 制造模具合同范本
- 中建施工員合同范本
- 中藥原料采購合同范本
- 不需交社保員工合同范本
- 傳媒公司培訓(xùn)合同范例
- 絕句遲日江山麗說課稿
- 高中化學(xué)教材(人教版)課本實驗(回歸課本)
- DB41T 2542-2023 燃?xì)忮仩t煙氣余熱回收利用技術(shù)規(guī)范
- DB11∕T 1847-2021 電梯井道作業(yè)平臺技術(shù)規(guī)程
- 2020光伏組件用接線盒 安全要求和試驗IEC62790
- 獸藥GSP質(zhì)量管理制度匯編
- USB-3.1-TYPE-C-培訓(xùn)資料公開課獲獎?wù)n件
- 《機(jī)械制圖(多學(xué)時)》中職全套教學(xué)課件
- 2024-2025學(xué)年小學(xué)信息技術(shù)(信息科技)第二冊電子工業(yè)版(2022)教學(xué)設(shè)計合集
- 課堂教學(xué)質(zhì)量評價表
- 人工智能通識-課件全套 黃君羨 01-12 初識人工智能 -AIGC安全與倫理
評論
0/150
提交評論