浙江省麗水市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第1頁(yè)
浙江省麗水市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第2頁(yè)
浙江省麗水市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第3頁(yè)
浙江省麗水市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第4頁(yè)
浙江省麗水市2022-2023學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

麗水市2022學(xué)年第一學(xué)期普通高中教學(xué)質(zhì)量監(jiān)控高一數(shù)學(xué)試題卷2023.1本試題卷分選擇題和非選擇題兩部分.全卷共5頁(yè),滿分150分,考試時(shí)間120分鐘.注意事項(xiàng):1.答題前,請(qǐng)務(wù)必將自己的姓名?準(zhǔn)考證號(hào)用黑色字跡的簽字筆或鋼筆分別填在試題卷和答題卷規(guī)定的位置上.2.答題時(shí),請(qǐng)按照答題卷上“注意事項(xiàng)”的要求,在答題卷相應(yīng)的位置上規(guī)范作答,在本試題卷上的作答一律無效.一?單項(xiàng)選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.已知全集SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】先求得SKIPIF1<0,再根據(jù)補(bǔ)集的定義,即可得答案.【詳解】由全集SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,故選:D2.下列哪組中的兩個(gè)函數(shù)是同一函數(shù)()A.SKIPIF1<0與SKIPIF1<0 B.SKIPIF1<0與SKIPIF1<0C.SKIPIF1<0與SKIPIF1<0 D.SKIPIF1<0與SKIPIF1<0【答案】D【解析】【分析】利用函數(shù)的定義判斷.【詳解】A.SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镽,故錯(cuò)誤;B.SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,給錯(cuò)誤;C.SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镽,故錯(cuò)誤;D.SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故錯(cuò)誤;故選:D3.設(shè)非空集合A,B滿足SKIPIF1<0,則()A.SKIPIF1<0x0∈A,使得x0SKIPIF1<0B B.SKIPIF1<0x∈A,有x∈BC.SKIPIF1<0x0∈B,使得x0SKIPIF1<0A D.SKIPIF1<0x∈B,有x∈A【答案】B【解析】【分析】SKIPIF1<0意味著集合SKIPIF1<0中的元素都是集合SKIPIF1<0中的元素,由此判斷即可【詳解】根據(jù)SKIPIF1<0可知,SKIPIF1<0x∈A,有x∈B故選:B4.“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】【分析】首先解分式不等式,再根據(jù)充分條件、必要條件的定義判斷即可.【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0一定成立,所以“SKIPIF1<0”是“SKIPIF1<0”的充分條件;當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0不一定成立,所以“SKIPIF1<0”是“SKIPIF1<0”的不必要條件.所以“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:A5.要得到函數(shù)SKIPIF1<0的圖象,只需將函數(shù)SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0A.向右平移SKIPIF1<0個(gè)單位 B.向左平移SKIPIF1<0個(gè)單位C.向右平移SKIPIF1<0個(gè)單位 D.向左平移SKIPIF1<0個(gè)單位【答案】D【解析】【分析】直接利用三角函數(shù)圖象的平移變換法則求解即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以得到函數(shù)SKIPIF1<0的圖象,只需將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位,故選D.【點(diǎn)睛】本題考查了三角函數(shù)的圖象,重點(diǎn)考查學(xué)生對(duì)三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學(xué)生對(duì)所學(xué)知識(shí)理解的深度.6.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則有()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】先利用余弦差角和倍角公式,正弦的二倍角公式以及商數(shù)關(guān)系,對(duì)SKIPIF1<0進(jìn)行化簡(jiǎn),再利用SKIPIF1<0的性質(zhì)即可得到結(jié)果.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0的性質(zhì)可知,SKIPIF1<0,故選:A.7.已知函數(shù)SKIPIF1<0,其圖象上兩點(diǎn)的橫坐標(biāo)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則有()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0的大小不確定【答案】C【解析】【分析】根據(jù)函數(shù)SKIPIF1<0,作差比較.【詳解】已知函數(shù)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C【點(diǎn)睛】本題主要考查作差法比較函數(shù)值的大小,還考查了運(yùn)算求解的能力,屬于中檔題.8.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為一次函數(shù),若對(duì)實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的表達(dá)式為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)題意,由絕對(duì)值的意義分析可得函數(shù)SKIPIF1<0和SKIPIF1<0的根為SKIPIF1<0和SKIPIF1<0,然后按SKIPIF1<0的符號(hào)分4種情況討論,求出SKIPIF1<0的解析式即可.【詳解】由SKIPIF1<0可知函數(shù)的分段點(diǎn)為SKIPIF1<0和SKIPIF1<0,而函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為一次函數(shù),所以可得函數(shù)SKIPIF1<0和SKIPIF1<0的根為SKIPIF1<0和SKIPIF1<0,假設(shè)SKIPIF1<0的根為SKIPIF1<0,SKIPIF1<0的根為SKIPIF1<0,分4種情況討論:(1)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相加可得SKIPIF1<0,(2)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相加可得SKIPIF1<0,(3)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相加可得SKIPIF1<0,(4)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相加可得SKIPIF1<0,綜上可得SKIPIF1<0故選:B三?多項(xiàng)選擇題(本大題共4小題,每小題5分,共計(jì)20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對(duì)的得5分,有選錯(cuò)的得0分,部分選對(duì)的得2分)9.下列函數(shù)圖象與SKIPIF1<0軸均有交點(diǎn),其中不能用二分法求其零點(diǎn)的是()A. B.C. D.【答案】AC【解析】【分析】根據(jù)函數(shù)零點(diǎn)存在原理、二分法逐一判斷即可.【詳解】由選項(xiàng)AC中函數(shù)圖象可知這兩個(gè)函數(shù)的函數(shù)值沒有負(fù)實(shí)數(shù),即在零點(diǎn)左右函數(shù)值不變號(hào),選項(xiàng)BD中的函數(shù)圖象可知這兩個(gè)函數(shù)的函數(shù)值有負(fù)實(shí)數(shù),即在零點(diǎn)左右函數(shù)值變號(hào),因此不能用二分法求其零點(diǎn)的是AC,故選:AC10.已知正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【解析】【分析】本題首先可根據(jù)SKIPIF1<0判斷出A,然后根據(jù)SKIPIF1<0判斷出B,再然后根據(jù)SKIPIF1<0判斷出C,最后根據(jù)SKIPIF1<0判斷出D.【詳解】因?yàn)镾KIPIF1<0、SKIPIF1<0是正實(shí)數(shù),所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).因SKIPIF1<0,所以SKIPIF1<0,故A不正確.因?yàn)镾KIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0等號(hào)成立,故B不正確.SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào).即SKIPIF1<0,故C正確.SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故D正確.故選:CD.11.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為正實(shí)數(shù),且SKIPIF1<0,則SKIPIF1<0的大小關(guān)系可能是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【解析】【分析】令SKIPIF1<0,SKIPIF1<0,討論SKIPIF1<0根據(jù)SKIPIF1<0的單調(diào)性確定大小關(guān)系.【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故B正確;當(dāng)SKIPIF1<0時(shí),由函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù)知SKIPIF1<0,所以SKIPIF1<0,故A正確;當(dāng)SKIPIF1<0時(shí),由函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù)知SKIPIF1<0,所以SKIPIF1<0,故C正確D不正確;故選:ABC12.已知函數(shù)SKIPIF1<0SKIPIF1<0為自然對(duì)數(shù)的底數(shù)),SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【解析】【分析】由題意SKIPIF1<0結(jié)合SKIPIF1<0的單調(diào)性易得SKIPIF1<0,根據(jù)已知零點(diǎn)判斷A、C;應(yīng)用零點(diǎn)存在性判斷SKIPIF1<0的范圍,由SKIPIF1<0求范圍判斷B;放縮法可得SKIPIF1<0SKIPIF1<0,作差法比較SKIPIF1<0的大小關(guān)系判斷D.【詳解】由題意SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0在定義域上遞增,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,A對(duì),C錯(cuò);由SKIPIF1<0,SKIPIF1<0,故零點(diǎn)SKIPIF1<0,所以SKIPIF1<0,B對(duì);由SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,而SKIPIF1<0,顯然SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,綜上,SKIPIF1<0,D對(duì).故選:ABD【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:注意函數(shù)形式得到SKIPIF1<0,結(jié)合單調(diào)性得到SKIPIF1<0,進(jìn)而有SKIPIF1<0關(guān)鍵.三?填空題(本大題共6小題,每小題5分,共30分13.寫出一個(gè)為奇函數(shù)的冪函數(shù)SKIPIF1<0__________.【答案】答案不唯一,如:SKIPIF1<0【解析】【分析】根據(jù)奇函數(shù)的定義,可得答案.【詳解】對(duì)于定義域內(nèi)任意SKIPIF1<0,SKIPIF1<0也在其定義域內(nèi),且SKIPIF1<0,則函數(shù)SKIPIF1<0為奇函數(shù).故答案為:答案不唯一,如:SKIPIF1<014.若a=log23,則2a+2﹣a=___.【答案】SKIPIF1<0.【解析】【分析】由對(duì)數(shù)式可容易求得SKIPIF1<0,代值即可解得.【詳解】因?yàn)镾KIPIF1<0,故可得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查對(duì)數(shù)式和指數(shù)式的計(jì)算,屬基礎(chǔ)題.15.若SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【解析】【分析】根據(jù)同角的三角函數(shù)關(guān)系式,結(jié)合兩角和的正弦公式進(jìn)行求解即可.【詳解】因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<016.已知函數(shù)SKIPIF1<0,若SKIPIF1<0的解集中有且僅有兩個(gè)整數(shù),則SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【解析】【分析】根據(jù)SKIPIF1<0,SKIPIF1<0的解集中有且僅有兩個(gè)整數(shù),得到兩個(gè)整數(shù)為0和1求解.【詳解】解:因?yàn)镾KIPIF1<0,且SKIPIF1<0的解集中有且僅有兩個(gè)整數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<017.我們知道,函數(shù)SKIPIF1<0的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱圖形的充要條件是函數(shù)SKIPIF1<0為奇函數(shù),有同學(xué)發(fā)現(xiàn)可以將其推廣為:函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0成中心對(duì)稱圖形的充要條件是函數(shù)SKIPIF1<0為奇函數(shù).根據(jù)這一結(jié)論,可以求出函數(shù)SKIPIF1<0的對(duì)稱中心是__________.【答案】SKIPIF1<0【解析】【分析】設(shè)SKIPIF1<0的對(duì)稱中心是SKIPIF1<0,根據(jù)題中結(jié)論利用奇函數(shù)的定義可得SKIPIF1<0,化簡(jiǎn)整理即可求得SKIPIF1<0,即得答案.【詳解】設(shè)SKIPIF1<0的對(duì)稱中心是SKIPIF1<0,則函數(shù)SKIPIF1<0為奇函數(shù),即SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0的對(duì)稱中心是SKIPIF1<0,故答案為:SKIPIF1<018.已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且在區(qū)間SKIPIF1<0上有且僅有一個(gè)SKIPIF1<0使SKIPIF1<0,則SKIPIF1<0的最大值為__________.【答案】SKIPIF1<0【解析】【分析】根據(jù)函數(shù)SKIPIF1<0的對(duì)稱軸以及SKIPIF1<0可求得SKIPIF1<0關(guān)于正整數(shù)k的表達(dá)式,根據(jù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有一個(gè)SKIPIF1<0使SKIPIF1<0,可確定正整數(shù)k的取值范圍,分類討論,即可確定答案.【詳解】因?yàn)镾KIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0為SKIPIF1<0的一條對(duì)稱軸,故SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0同為奇數(shù)或偶數(shù);又SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有一個(gè)SKIPIF1<0使SKIPIF1<0,故要求SKIPIF1<0的最大值,需使SKIPIF1<0包含的周期應(yīng)最多,所以SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為奇數(shù),SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0等于SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,不合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為偶數(shù),SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0等于SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,不合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為奇數(shù),SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0等于SKIPIF1<0時(shí),SKIPIF1<0,合乎題意;由于SKIPIF1<0,即SKIPIF1<0隨著k的增大而增大,故SKIPIF1<0的最大值為SKIPIF1<0,故答案為:SKIPIF1<0【點(diǎn)睛】難點(diǎn)點(diǎn)睛:本題是關(guān)于三角函數(shù)解析式的求解問題,要根據(jù)函數(shù)的性質(zhì)求得解析式中得參數(shù),難點(diǎn)在于求得參數(shù)SKIPIF1<0的表達(dá)式之后,要能根據(jù)函數(shù)在區(qū)間SKIPIF1<0上有且僅有一個(gè)SKIPIF1<0使SKIPIF1<0,結(jié)合正弦函數(shù)性質(zhì),分類討論k的取值,確定SKIPIF1<0.四?解答題(本大題共5小題,共60分.解答應(yīng)寫出文字說明,證明過程或演算步驟.19.已知SKIPIF1<0,且SKIPIF1<0是第一象限角.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)先弦化切,再結(jié)合同角三角函數(shù)的基本關(guān)系式求得所求表達(dá)式的值.(2)先應(yīng)用誘導(dǎo)公式,再弦化切,最后結(jié)合同角三角函數(shù)的基本關(guān)系式求得所求表達(dá)式的值.【小問1詳解】SKIPIF1<0【小問2詳解】SKIPIF1<0SKIPIF1<020.已知函數(shù)SKIPIF1<0.(1)求出SKIPIF1<0的最小正周期及單調(diào)遞增區(qū)間;(2)若SKIPIF1<0,求使SKIPIF1<0成立的SKIPIF1<0的取值集合.【答案】(1)SKIPIF1<0;SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)根據(jù)三角函數(shù)的最小正周期公式求得SKIPIF1<0的最小正周期,利用整體代入法求得單調(diào)遞增區(qū)間.(2)由SKIPIF1<0,根據(jù)三角恒等變換的知識(shí)求得SKIPIF1<0的取值集合.【小問1詳解】SKIPIF1<0的最小正周期SKIPIF1<0;由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0單調(diào)遞增區(qū)間是SKIPIF1<0.【小問2詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0的取值集合是SKIPIF1<0.21.某廠家為增加某種商品的銷售量,決定投入廣告據(jù)市場(chǎng)調(diào)查,廣告投入費(fèi)用SKIPIF1<0(單位:萬元)與增加的銷售量SKIPIF1<0(單位:千件)SKIPIF1<0滿足下列數(shù)據(jù):增加的銷售量SKIPIF1<001245廣告投入費(fèi)用SKIPIF1<00.0000.4520.8161.3281.500為了描述廣告投入費(fèi)用SKIPIF1<0與增加的銷售量SKIPIF1<0的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(1)選出你認(rèn)為最符合題意的函數(shù)模型,并說明理由;(2)根據(jù)你選擇的函數(shù)模型,求出相應(yīng)的函數(shù)解析式;你認(rèn)為增加的銷售量SKIPIF1<0為多少時(shí),每千件的廣告投入費(fèi)用最少?【答案】(1)選擇SKIPIF1<0是最合適的模型,理由見解析(2)SKIPIF1<0;SKIPIF1<0千件【解析】【分析】(1)可利用特殊點(diǎn)與單調(diào)性,排除不合適函數(shù)模型;(2)可將表中數(shù)據(jù)代入(1)中所選函數(shù)模型,求出函數(shù)SKIPIF1<0,則每件的廣告費(fèi)用為SKIPIF1<0,繼而求其最值即可.【小問1詳解】SKIPIF1<0SKIPIF1<0,在區(qū)間SKIPIF1<0上單調(diào)遞減,SKIPIF1<0與表中數(shù)據(jù)矛盾,該模型不合適,SKIPIF1<0SKIPIF1<0,則函數(shù)在SKIPIF1<0處無意義,SKIPIF1<0與表中數(shù)據(jù)矛盾,該模型不合適,故選擇SKIPIF1<0是最合適的模型.【小問2詳解】將表中的數(shù)據(jù)SKIPIF1<0代入SKIPIF1<0可得,SKIPIF1<0解得SKIPIF1<0所以SKIPIF1<0;設(shè)每千件的廣告費(fèi)用為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最小值為SKIPIF1<0,故銷售量增加達(dá)到SKIPIF1<0千件時(shí),才能使每千件的廣告投入費(fèi)用最少.22.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,判斷函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性并用定義證明;(2)SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)單調(diào)遞增,證明見解析(2)SKIPIF1<0或SKIPIF1<0.【解析】【分析】(1)先取值,再對(duì)函數(shù)值作差,變形后判斷符號(hào),從而可得結(jié)論;(2)由SKIPIF1<0,得SKIPIF1<0恒成立,從而可求出實(shí)數(shù)SKIPIF1<0的取值范圍.【小問1詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.證:SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.【小問2詳解】由SKIPIF1<0,因?yàn)镾KIPIF1<0,所以有SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論