版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣西龍勝縣2023年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.《孫子算經(jīng)》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺,木長幾何?”譯文大致是:“用一根繩子去量一根木條,繩子剩余尺;將繩子對折再量木條,木條剩余尺,問木條長多少尺?”如果設(shè)木條長尺,繩子長尺,可列方程組為()A. B. C. D.2.如圖,和都是等腰直角三角形,,,的頂點在的斜邊上,、交于,若,,則的長為()A. B. C. D.3.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.4.下列圖形中,是中心對稱圖形的是()A. B. C. D.5.某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)6.?dāng)S一枚質(zhì)地均勻的硬幣6次,下列說法正確的是()A.必有3次正面朝上 B.可能有3次正面朝上C.至少有1次正面朝上 D.不可能有6次正面朝上7.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或18.如圖,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,則S△ADE:S四邊形DFGE:S四邊形FBCG等于()A.1:2:4 B.1:4:16 C.1:3:12 D.1:3:79.如圖,過反比例函數(shù)的圖象上一點作軸于點,連接,若,則的值為()A.2 B.3 C.4 D.510.下列運算正確的是()A.x6÷x3=x2 B.(x3)2=x5 C. D.11.如圖,在中,.將繞點按順時針方向旋轉(zhuǎn)度后得到,此時點在邊上,斜邊交邊于點,則的大小和圖中陰影部分的面積分別為()A. B.C. D.12.在同一時刻,身高1.6m的小強在陽光下的影長為0.8m,一棵大樹的影長為4.8m,則樹的高度為()A.4.8m B.6.4m C.9.6m D.10m二、填空題(每題4分,共24分)13.甲、乙兩人在100米短跑訓(xùn)練中,某5次的平均成績相等,甲的方差是0.12,乙的方差是0.05,這5次短跑訓(xùn)練成績較穩(wěn)定的是_____.(填“甲”或“乙”)14.如圖,已知點D,E是半圓O上的三等分點,C是弧DE上的一個動點,連結(jié)AC和BC,點I是△ABC的內(nèi)心,若⊙O的半徑為3,當(dāng)點C從點D運動到點E時,點I隨之運動形成的路徑長是_____.15.已知二次函數(shù)的部分圖象如圖所示,則一元二次方程的解為:_____.16.如圖是一位同學(xué)設(shè)計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=12米,那么該古城墻的高度CD是米.17.如圖,四邊形的項點都在坐標(biāo)軸上,若與面積分別為和,若雙曲線恰好經(jīng)過的中點,則的值為__________.18.下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程.已知:直線和直線外一點.求作:直線的垂線,使它經(jīng)過.作法:如圖2.(1)在直線上取一點,連接;(2)分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于,兩點,連接交于點;(3)以點為圓心,為半徑作圓,交直線于點(異于點),作直線.所以直線就是所求作的垂線.請你寫出上述作垂線的依據(jù):______.三、解答題(共78分)19.(8分)在正方形中,點是邊上一點,連接.圖1圖2(1)如圖1,點為的中點,連接.已知,,求的長;(2)如圖2,過點作的垂線交于點,交的延長線于點,點為對角線的中點,連接并延長交于點,求證:.20.(8分)一次函數(shù)的圖像與x軸相交于點A,與y軸相交于點B,二次函數(shù)圖像經(jīng)過點A、B,與x軸相交于另一點C.(1)求a、b的值;(2)在直角坐標(biāo)系中畫出該二次函數(shù)的圖像;(3)求∠ABC的度數(shù).21.(8分)如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.(1)求證:直線DF與⊙O相切;(2)若AE=7,BC=6,求AC的長.22.(10分)已知關(guān)于的方程有兩個不相等的實數(shù)根.(1)求的取值范圍;(2)若,求的值.23.(10分)如圖,在平面直角坐標(biāo)系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點P,Q.(1)求P點的坐標(biāo);(2)若△POQ的面積為9,求k的值.24.(10分)如圖,在平面直角坐標(biāo)系中,已知矩形的三個頂點、、.拋物線的解析式為.(1)如圖一,若拋物線經(jīng)過,兩點,直接寫出點的坐標(biāo);拋物線的對稱軸為直線;(2)如圖二:若拋物線經(jīng)過、兩點,①求拋物線的表達(dá)式.②若點為線段上一動點,過點作交于點,過點作于點交拋物線于點.當(dāng)線段最長時,求點的坐標(biāo);(3)若,且拋物線與矩形沒有公共點,直接寫出的取值范圍.25.(12分)已知關(guān)于x的方程x2-(2m+1)x+m(m+1)=0.(1)求證:方程總有兩個不相等的實數(shù)根;(2)已知方程的一個根為x=0,求代數(shù)式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化簡再求值).26.已知二次函數(shù)的圖象經(jīng)過三點(1,0),(-6,0)(0,-3).(1)求該二次函數(shù)的解析式.(2)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)交于點A(),落在兩個相鄰的正整數(shù)之間,請求出這兩個相鄰的正整數(shù).(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)的交點為B,點B的橫坐標(biāo)為m,且滿足3<m<4,求實數(shù)k的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)“一根繩子去量一根木條,繩子剩余4.5尺”可知:繩子-木條=4.5,再根據(jù)“將繩子對折再量木條,木條剩余1尺”可知:木條-繩子=1,據(jù)此列出方程組即可.【詳解】由題意可得,.故選:D.【點睛】本題考查二元一次方程組的實際應(yīng)用,解題的關(guān)鍵是明確題意,找出等量關(guān)系,列出相應(yīng)的二元一次方程組.2、B【分析】連接BD,自F點分別作,交AD、BD于G、H點,通過證明,可得,根據(jù)勾股定理求出AB的長度,再根據(jù)角平分線的性質(zhì)可得,根據(jù)三角形面積公式可得,代入中即可求出BF的值.【詳解】如圖,連接BD,自F點分別作,交AD、BD于G、H點∵和都是等腰直角三角形∴在△ECA和△DCB中在Rt△ADB中,∴DF是∠ADB的角平分線∵△ADF底邊AF上的高h(yuǎn)與△BDF底邊BF上的高h(yuǎn)相同故答案為:B.【點睛】本題考查了三角形的綜合問題,掌握等腰直角三角形的性質(zhì)、全等三角形的性質(zhì)以及判定定理、勾股定理、角平分線的性質(zhì)、三角形面積公式是解題的關(guān)鍵.3、B【詳解】解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對應(yīng)相等的兩三角形相似可得△AED∽△BDF所以,設(shè)AD=a,BD=2a,AB=BC=CA=3a,再設(shè)CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質(zhì).4、D【分析】根據(jù)中心對稱圖形的定義:把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,逐一判斷即可.【詳解】解:A選項不是中心對稱圖形,故本選項不符合題意;B選項不是中心對稱圖形,故本選項不符合題意;C選項不是中心對稱圖形,故本選項不符合題意;D選項是中心對稱圖形,故本選項符合題意;故選D.【點睛】此題考查的是中心對稱圖形的識別,掌握中心對稱圖形的定義是解決此題的關(guān)鍵.5、A【分析】設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征分別進(jìn)行判斷.【詳解】設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過點(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(2,-3)在反比例函數(shù)y=-的圖象上.故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.6、B【分析】根據(jù)隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,可得答案.【詳解】解:擲硬幣問題,正、反面朝上的次數(shù)屬于隨機事件,不是確定事件,故A,C,D錯誤.
故選:B.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、D【分析】當(dāng)k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當(dāng)k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當(dāng)k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當(dāng)k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.8、C【分析】由于DE∥FG∥BC,那么△ADE△AFGABC,根據(jù)AD:AF:AB=1:2:4,可得出三個相似三角形的面積比,進(jìn)而得出△ADE、四邊形DFGE、四邊形FBCG的面積比.【詳解】設(shè)△ADE的面積為a,則△AFG和△ABC的面積分別是4a、16a;則分別是3a、12a;則S△ADE:S四邊形DFGE:S四邊形FBCG=1:3:12故選C.【點睛】本題主要考察相似三角形,解題突破口是根據(jù)平行性質(zhì)推出△ADE△AFGABC.9、C【分析】根據(jù),利用反比例函數(shù)系數(shù)的幾何意義即可求出值,再根據(jù)函數(shù)在第一象限可確定的符號.【詳解】解:由軸于點,,得到又因圖象過第一象限,,解得故選C【點睛】本題考查了反比例函數(shù)系數(shù)的幾何意義.10、D【分析】分別根據(jù)同底數(shù)冪的乘法法則,冪的乘方運算法則,算術(shù)平方根的定義以及立方根的定義逐一判斷即可.【詳解】解:A.x6÷x3=x3,故本選項不合題意;B.(x3)2=x6,故本選項不合題意;C.,故本選項不合題意;D.,正確,故本選項符合題意.故選:D.【點睛】本題主要考查了算術(shù)平方根、立方根、同底數(shù)冪的除法以及冪的乘方與積的乘方,熟記修改運算法則是解答本題的關(guān)鍵.11、C【解析】試題分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋轉(zhuǎn)而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等邊三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位線,∴DF=BC=×2=1,CF=AC=×2=,∴S陰影=DF×CF=×=.故選C.考點:1.旋轉(zhuǎn)的性質(zhì)2.含30度角的直角三角形.12、C【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】設(shè)樹高為x米,所以x=4.8×2=9.6.這棵樹的高度為9.6米故選C.【點睛】考查相似三角形的應(yīng)用,掌握同一時刻物高和影長成正比是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、乙【分析】根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】解:∵甲的方差為0.14,乙的方差為0.06,∴S甲2>S乙2,∴成績較為穩(wěn)定的是乙;故答案為:乙.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.14、π.【分析】連接AI,BI,作OT⊥AB交⊙O于T,連接AT,TB,以T為圓心,TA為半徑作⊙T,在優(yōu)弧AB上取一點G,連接AG,BG.證明∠AIB+∠G=180°,推出A,I,B,G四點共圓,【詳解】如圖,連接AI,BI,作OT⊥AB交⊙O于T,連接AT,TB,以T為圓心,TA為半徑作⊙T,在優(yōu)弧AB上取一點G,連接AG,BG.推出點I的運動軌跡是即可解決問題.∵AB是直徑,∴∠ACB=90°,∵I是△ABC的內(nèi)心,∴∠AIB=135°,∵OT⊥AB,OA=OB,∴TA=TB,∠ATB=90°,∴∠AGB=∠ATB=45°,∴∠AIB+∠G=180°,∴A,I,B,G四點共圓,∴點I的運動軌跡是,由題意,∴∠MTM=30°,易知TA=TM=3,∴點I隨之運動形成的路徑長是,故答案為.【點睛】本題考查了軌跡,垂徑定理、圓周角定理、三角形的內(nèi)心和等邊三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找點的運動軌跡.15、【解析】依題意得二次函數(shù)y=的對稱軸為x=-1,與x軸的一個交點為(-3,0),∴拋物線與x軸的另一個交點橫坐標(biāo)為(-1)×2-(-3)=1,∴交點坐標(biāo)為(1,0)∴當(dāng)x=1或x=-3時,函數(shù)值y=0,即,∴關(guān)于x的一元二次方程的解為x1=?3或x2=1.故答案為:.點睛:本題考查的是關(guān)于二次函數(shù)與一元二次方程,在解題過程中,充分利用二次凹函數(shù)圖象,根據(jù)圖象提取有用條件來解答,這樣可以降低題的難度,從而提高解題效率.16、1.【解析】試題分析:根據(jù)題目中的條件易證△ABP∽△CDP,由相似三角形對應(yīng)邊的比相等可得,即,解得CD=1m.考點:相似三角形的應(yīng)用.17、6【分析】根據(jù)AB//CD,得出△AOB與△OCD相似,利用△AOB與△OCD的面積分別為8和18,得:AO:OC=BO:OD=2:3,然后再利用同高三角形求得S△COB=12,設(shè)B、C的坐標(biāo)分別為(a,0)、(0,b),E點坐標(biāo)為(a,b)進(jìn)行解答即可.【詳解】解:∵AB//CD,∴△AOB∽△OCD,又∵△ABD與△ACD的面積分別為8和18,∴△ABD與△ACD的面積比為4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12設(shè)B、C的坐標(biāo)分別為(a,0)、(0,b),E點坐標(biāo)為(a,b)則OB=|a|、OC=|b|∴|a|×|b|=12即|a|×|b|=24∴|a|×|b|=6又∵,點E在第三象限∴k=xy=a×b=6故答案為6.【點睛】本題考查了反比例函數(shù)綜合題應(yīng)用,根據(jù)已知求出S△COB=12是解答本題的關(guān)鍵.18、直徑所對的圓周角是直角【分析】由題意知點E在以PA為直徑的圓上,根據(jù)“直徑所對的圓周角是直角”可得∠PEA=90°,即PE⊥直線a.【詳解】由作圖知,點E在以PA為直徑的圓上,所以∠PEA=90°,則PE⊥直線a,所以該尺規(guī)作圖的依據(jù)是:直徑所對的圓周角是直角,故答案為:直徑所對的圓周角是直角.【點睛】本題主要考查作圖?尺規(guī)作圖,解題的關(guān)鍵是掌握線段中垂線的尺規(guī)作圖及其性質(zhì)和直徑所對的圓周角是直角.三、解答題(共78分)19、(1);(2)證明見解析.【分析】(1)作于點,由直角三角形斜邊上的中線等于斜邊的一半可推出,,在中,利用三角函數(shù)求出BP,F(xiàn)P,在等腰三角形中,求出BE,再由勾股定理求出AB,進(jìn)而得到BC和CP,再次利用勾股定理即可求出CF的長度.(2)過作垂直于點,得矩形,首先證明,得,再證明,可推出得.【詳解】解:(1)中,為中線,,,.作于點,如圖,中,在等腰三角形中,,由勾股定理求得,(2)過作垂直于點,得矩形,∵AB∥CD∴∠MAO=∠GCO在△AMO和△CGO中,∵∠MAO=∠GCO,AO=CO,∠AOM=∠COG∴△AMO≌△CGO(ASA)∴AM=GC∵四邊形BCGP為矩形,∴GC=PB,PG=BC=AB∵AE⊥HG∴∠H+∠BAE=90°又∵∠AEB+∠BAE=90°∴∠AEB=∠H在△ABE和△GPH中,∵∠AEB=∠H,∠ABE=∠GPH=90°,AB=PG∴△ABE≌△GPH(AAS)∴BE=PH又∵CG=PB=AM∴BE=PH=PB+BH=CG+BH=AM+BH即AM+BH=BE.【點睛】本題考查了正方形和矩形的性質(zhì),三角函數(shù),勾股定理,以及全等三角形的判定和性質(zhì),正確作出輔助線,利用全等三角形對應(yīng)邊相等將線段進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵.20、(1),b=6;(2)見解析;(3)∠ABC=45°【分析】(1)根據(jù)已知條件求得點A、點B的坐標(biāo),再代入二次函數(shù)的解析式,即可求得答案;(2)根據(jù)列表、描點、依次連接即可畫出該二次函數(shù)的圖像;(3)作AD⊥BC,利用兩點之間的距離公式求得的邊長,再運用面積法求高的方法求得AD,最后用特殊角的三角函數(shù)值求得答案.【詳解】(1)∵一次函數(shù)的圖像與x軸相交于點A,與y軸相交于點B,∴令,則;令,則;∴點A、點B的坐標(biāo)分別為:,∵二次函數(shù)圖像經(jīng)過點A、B,∴,解得:,∴,b=6;(2)由(1)知二次函數(shù)的解析式為:對稱軸為直線:,與x軸的交點為.x-2-100.5123y0460.25640二次函數(shù)的圖像如圖:(3)如圖,過A作AD⊥BC于D,AB=,CB=,,∵,,∴,解得:,在中,,∵,∴.故∠ABC=45°.【點睛】本題考查了一次函數(shù)和二次函數(shù)的性質(zhì),用待定系數(shù)法確定函數(shù)的解析式,勾股定理以及面積法求高的應(yīng)用,解此題的關(guān)鍵是運用面積法求高的長,用特殊角的三角函數(shù)值求角的大小.21、(1)證明見解析;(2)1.【分析】(1)首先連接OD,根據(jù)等腰三角形的性質(zhì)可證∠C=∠ODC,從而可證∠B=∠ODC,根據(jù)DF⊥AB可證DF⊥OD,所以可證線DF與⊙O相切;(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)可得:△BCA∽△BED,所以可證:,解方程求出BE的長度,從而求出AC的長度.【詳解】解:(1)如圖所示,連接,∵,∴,∵,∴,∴,∴∥,∵,∴;∵點在⊙O上,∴直線與⊙O相切;(2)∵四邊形是⊙O的內(nèi)接四邊形,∴,∵,∴,∴△BED∽△BCA,∴,∵OD∥AB,,∴,∵,∴,∴,∴【點睛】本題考查切線的判定與性質(zhì);相似三角形的判定與性質(zhì).22、(1)且;(2)8【分析】(1)利用根的判別式求解即可;(2)利用求根公式求解即可.【詳解】解:(1)∵方程有兩個不相等的實數(shù)根,∴且,解得且.∴的取值范圍是且.(2)∵是方程的兩個根,∴,,∴,即.解得(舍去),,經(jīng)檢驗,是原方程的解.故的值是8.【點睛】本題考查的知識點是一元二次方程根與系數(shù)的關(guān)系,熟記根的判別式以及求根公式是解此題的關(guān)鍵.23、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x軸,則點P的縱坐標(biāo)為2,然后把y=2代入y=得到對應(yīng)的自變量的值,從而得到P點坐標(biāo);(2)由于S△POQ=S△OMQ+S△OMP,根據(jù)反比例函數(shù)k的幾何意義得到|k|+×|6|=9,然后解方程得到滿足條件的k的值.【詳解】(1)∵PQ∥x軸,∴點P的縱坐標(biāo)為2,把y=2代入y=得x=3,∴P點坐標(biāo)為(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【點睛】本題主要考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)k的幾何意義是解題的關(guān)鍵.24、(1)(4,8);x=6;(2)①;②(6,4);(3)或【分析】(1)根據(jù)矩形的性質(zhì)即可求出點A的坐標(biāo),然后根據(jù)拋物線的對稱性,即可求出拋物線的對稱軸;(2)①將A、C兩點的坐標(biāo)代入解析式中,即可求出拋物線的表達(dá)式;②先利用待定系數(shù)法求出直線AC的解析式,然后設(shè)點E的坐標(biāo)為,根據(jù)坐標(biāo)特征求出點G的坐標(biāo),即可求出EG的長,利用二次函數(shù)求最值即可;(3)畫出圖象可知:當(dāng)x=4時,若拋物線上的對應(yīng)點位于點B的下方或當(dāng)x=8時,拋物線上的對應(yīng)點位于D點上方時,拋物線與矩形沒有公共點,將x=4和x=8分別代入解析式中,列出不等式,即可求出b的取值范圍.【詳解】解:(1)∵矩形的三個頂點、、∴點A的橫坐標(biāo)與點B的橫坐標(biāo)相同,點A的縱坐標(biāo)與點D的縱坐標(biāo)相同∴點A的坐標(biāo)為:(4,8)∵點A與點D的縱坐標(biāo)相同,且A、D都在拋物線上∴點A和點D關(guān)于拋物線的對稱軸對稱∴拋物線的對稱軸為:直線.故答案為:(4,8);x=6;(2)①將A、C兩點的坐標(biāo)代入,得解得:故拋物線的表達(dá)式為;②設(shè)直線AC的解析式為y=kx+c將A、C兩點的坐標(biāo)代入,得解得:∴直線AC的解析式為設(shè)點E的坐標(biāo)為,∵EG⊥AD,AD∥x軸∴點E和點G的橫坐標(biāo)相等∵點G在拋物線上∴點G的坐標(biāo)為∴EG===∵∴當(dāng)時,EG有最大值,且最大值為2,將代入E點坐標(biāo),可得,點E坐標(biāo)為(6,4).(3)當(dāng)時,拋物線的解析式為如下圖所示,當(dāng)x=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度海洋運輸貨物保險合同(含附加責(zé)任險及第三方責(zé)任)3篇
- 2024版技術(shù)開發(fā)保密與知識產(chǎn)權(quán)歸屬規(guī)范化合同一
- 二零二五年度甲醇生產(chǎn)設(shè)備租賃合同范本3篇
- 二零二五年度國際環(huán)保技術(shù)轉(zhuǎn)移與環(huán)保設(shè)備進(jìn)口合同樣本3篇
- 2024物聯(lián)網(wǎng)農(nóng)業(yè)技術(shù)服務(wù)外包合同
- 2024年生態(tài)綠化苗木購銷合同
- 二零二五年度文化石石材礦產(chǎn)資源開發(fā)與銷售合同3篇
- 2024物流代理業(yè)務(wù)合作合同版B版
- 2025版車貸反擔(dān)保債務(wù)重組與債務(wù)轉(zhuǎn)移合同3篇
- 二零二五年度房地產(chǎn)抵押合同及抵押物權(quán)屬變更合同3篇
- 水電解質(zhì)及酸堿平衡的業(yè)務(wù)學(xué)習(xí)
- 統(tǒng)編版一年級語文上冊 第5單元教材解讀 PPT
- CSCEC8XN-SP-安全總監(jiān)項目實操手冊
- 加減乘除混合運算600題直接打印
- 口腔衛(wèi)生保健知識講座班會全文PPT
- 成都市產(chǎn)業(yè)園區(qū)物業(yè)服務(wù)等級劃分二級標(biāo)準(zhǔn)整理版
- 最新監(jiān)督學(xué)模擬試卷及答案解析
- ASCO7000系列GROUP5控制盤使用手冊
- 污水處理廠關(guān)鍵部位施工監(jiān)理控制要點
- 財政投資評審中心工作流程
- 男性公民兵役登記表.docx
評論
0/150
提交評論