2023-2024學年江蘇省泰州市興化市重點名校中考數(shù)學考前最后一卷含解析_第1頁
2023-2024學年江蘇省泰州市興化市重點名校中考數(shù)學考前最后一卷含解析_第2頁
2023-2024學年江蘇省泰州市興化市重點名校中考數(shù)學考前最后一卷含解析_第3頁
2023-2024學年江蘇省泰州市興化市重點名校中考數(shù)學考前最后一卷含解析_第4頁
2023-2024學年江蘇省泰州市興化市重點名校中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省泰州市興化市重點名校中考數(shù)學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機在大正方形及其內(nèi)部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.52.式子有意義的x的取值范圍是()A.且x≠1 B.x≠1 C. D.且x≠13.對于反比例函數(shù),下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小4.平面直角坐標系中,若點A(a,﹣b)在第三象限內(nèi),則點B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.一個圓錐的側面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.66.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<47.如圖,△ABC是等邊三角形,點P是三角形內(nèi)的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.38.多項式4a﹣a3分解因式的結果是()A.a(chǎn)(4﹣a2)B.a(chǎn)(2﹣a)(2+a)C.a(chǎn)(a﹣2)(a+2)D.a(chǎn)(2﹣a)29.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.10.下列圖案是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知a<0,那么|﹣2a|可化簡為_____.12.一次函數(shù)y=kx+b的圖像如圖所示,則當kx+b>0時,x的取值范圍為___________.13.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.14.如圖,邊長為6cm的正三角形內(nèi)接于⊙O,則陰影部分的面積為(結果保留π)_____.15.在平面直角坐標系xOy中,將拋物線y=3(x+2)2-1平移后得到拋物線y=3x2+2.請你寫出一種平移方法.答:________.16.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.三、解答題(共8題,共72分)17.(8分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).18.(8分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.19.(8分)如圖,已知矩形OABC的頂點A、C分別在x軸的正半軸上與y軸的負半軸上,二次函數(shù)的圖像經(jīng)過點B和點C.(1)求點A的坐標;(2)結合函數(shù)的圖象,求當y<0時,x的取值范圍.20.(8分)計算:27﹣(﹣2)0+|1﹣3|+2cos30°.21.(8分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.22.(10分)如圖,直線與雙曲線相交于、兩點.(1),點坐標為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標23.(12分)如圖是8×8的正方形網(wǎng)格,A、B兩點均在格點(即小正方形的頂點)上,試在下面三個圖中,分別畫出一個以A,B,C,D為頂點的格點菱形(包括正方形),要求所畫的三個菱形互不全等.24.某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學生進行調(diào)查,要求每名學生從中選出一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結果繪制的不完整統(tǒng)計表:節(jié)目代號ABCDE節(jié)目類型新聞體育動畫娛樂戲曲喜愛人數(shù)1230m549請你根據(jù)以上的信息,回答下列問題:(1)被調(diào)查學生的總數(shù)為人,統(tǒng)計表中m的值為.扇形統(tǒng)計圖中n的值為;(2)被調(diào)查學生中,最喜愛電視節(jié)目的“眾數(shù)”;(3)該校共有2000名學生,根據(jù)調(diào)查結果,估計該校最喜愛新聞節(jié)目的學生人數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

設大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【詳解】解:設大正方形邊長為2,則小正方形邊長為1,因為面積比是相似比的平方,

所以大正方形面積為4,小正方形面積為1,

則針孔扎到小正方形(陰影部分)的概率是;故選:B.【點睛】本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.2、A【解析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)和分式分母不為0的條件,要使在實數(shù)范圍內(nèi)有意義,必須且.故選A.3、C【解析】

由題意分析可知,一個點在函數(shù)圖像上則代入該點必定滿足該函數(shù)解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數(shù)圖象上,A正確;因為2大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數(shù)在x>0時,y隨x的增大而減小,所以C錯誤;D中,當x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數(shù)【點睛】本題屬于對反比例函數(shù)的基本性質以及反比例函數(shù)的在各個象限單調(diào)性的變化4、D【解析】分析:根據(jù)題意得出a和b的正負性,從而得出點B所在的象限.詳解:∵點A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點B在第四象限,故選D.點睛:本題主要考查的是象限中點的坐標特點,屬于基礎題型.明確各象限中點的橫縱坐標的正負性是解題的關鍵.5、C【解析】設母線長為R,底面半徑是3cm,則底面周長=6π,側面積=3πR=12π,

∴R=4cm.故選C.6、B【解析】

根據(jù)第四象限內(nèi)點的橫坐標是正數(shù),縱坐標是負數(shù)列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式組的解集是m>1,

即m的取值范圍是m>1.

故選B.【點睛】本題考查各象限內(nèi)點的坐標的符號特征以及解不等式,記住各象限內(nèi)點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、C【解析】

過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質及等邊三角形的性質即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點睛】本題主要考查了平行四邊形的判定及性質以及等邊三角形的判定及性質,等邊三角形的性質:等邊三角形的三個內(nèi)角都相等,且都等于60°.8、B【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.9、D【解析】試題解析:設小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.10、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣3a【解析】

根據(jù)二次根式的性質和絕對值的定義解答.【詳解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【點睛】本題主要考查了根據(jù)二次根式的意義化簡.二次根式規(guī)律總結:當a≥0時,=a;當a≤0時,=﹣a.解題關鍵是要判斷絕對值符號和根號下代數(shù)式的正負再去掉符號.12、x>1【解析】分析:題目要求kx+b>0,即一次函數(shù)的圖像在x軸上方時,觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數(shù)的圖像在x軸上方時,∴x的取值范圍為:x>1.故答案為x>1.點睛:本題考查了一次函數(shù)與一元一次不等式的關系,主要考查學生的觀察視圖能力.13、88【解析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).14、(4π﹣3)cm1【解析】

連接OB、OC,作OH⊥BC于H,根據(jù)圓周角定理可知∠BOC的度數(shù),根據(jù)等邊三角形的性質可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【點睛】本題主要考查圓周角定理及等邊三角形的性質,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關鍵.15、答案不唯一【解析】分析:把y改寫成頂點式,進而解答即可.詳解:y先向右平移2個單位長度,再向上平移3個單位得到拋物線.故答案為y先向右平移2個單位長度,再向上平移3個單位得到拋物線.點睛:本題考查了二次函數(shù)圖象與幾何變換:先把二次函數(shù)的解析式配成頂點式為y=a(x-)2+,然后把拋物線的平移問題轉化為頂點的平移問題.16、【解析】

判斷出即是中心對稱,又是軸對稱圖形的個數(shù),然后結合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.三、解答題(共8題,共72分)17、(1)60,90;(2)見解析;(3)300人【解析】

(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據(jù)題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù)為300人.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關知識點.18、【解析】試題分析:由矩形的對角線相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等邊三角形,從而得到OB=OA=2,則BD=4,最后在Rt△ABD中,由勾股定理可解得AD的長.試題解析:∵四邊形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等邊三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴AD===.19、(1);(2)【解析】

(1)當時,求出點C的坐標,根據(jù)四邊形為矩形,得出點B的坐標,進而求出點A即可;(2)先求出拋物線圖象與x軸的兩個交點,結合圖象即可得出.【詳解】解:(1)當時,函數(shù)的值為-2,∴點的坐標為∵四邊形為矩形,解方程,得.∴點的坐標為.∴點的坐標為.(2)解方程,得.由圖象可知,當時,的取值范圍是.【點睛】本題考查了二次函數(shù)與幾何問題,以及二次函數(shù)與不等式問題,解題的關鍵是靈活運用幾何知識,并熟悉二次函數(shù)的圖象與性質.20、53【解析】

(1)原式利用二次根式的性質,零指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值進行化簡即可得到結果.【詳解】原式=33=33=53【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.21、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解析】

(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式組的解集即可.【詳解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式組的解集為﹣1≤x<1.【點睛】本題考查了解一元一次不等式組和解一元二次方程,能把一元二次方程轉化成一元一次方程是解(1)的關鍵,能根據(jù)不等式的解集找出不等式組的解集是解(2)的關鍵.22、(1),;(1),.【解析】

(1)由點A在一次函數(shù)圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點A的坐標,再由點A的坐標利用待定系數(shù)法求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;

(1)作點A關于y軸的對稱點A′,作點B作關于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA.利用待定系數(shù)法求出直線A′B′的解析式,進而求出P、Q兩點坐標.【詳解】解:(1)把點A(-1,a)代入一次函數(shù)y=x+4,

得:a=-1+4,解得:a=3,

∴點A的坐標為(-1,3).

把點A(-1,3)代入反比例函數(shù)y=,

得:k=-3,

∴反比例函數(shù)的表達式y(tǒng)=-.

聯(lián)立兩個函數(shù)關系式成方程組得:解得:或∴點B的坐標為(-3,1).

故答案為3,(-3,1);(1)作點A關于y軸的對稱點A′,作點B作關于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA,如圖所示.

∵點B、B′關于x軸對稱,點B的坐標為(-3,1),

∴點B′的坐標為(-3,-1),PB=PB′,

∵點A、A′關于y軸對稱,點A的坐標為(-1,3),

∴點A′的坐標為(1,3),QA=QA′,

∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.

設直線A′B′的解析式為y=mx+n,

把A′,B′兩點代入得:解得:∴直線A′B′的解析式為y=x+1.

令y=0,則x+1=0,解得:x=-1,點P的坐標為(-1,0),

令x=0,則y=1,點Q的坐標為(0,1).【點睛】本題考查反比例函數(shù)與一次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論