2023-2024學年上海市嘉定區(qū)重點中學畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若關于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..2.某公司第4月份投入1000萬元科研經(jīng)費,計劃6月份投入科研經(jīng)費比4月多500萬元.設該公司第5、6個月投放科研經(jīng)費的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+5003.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+4.上體育課時,小明5次投擲實心球的成績?nèi)缦卤硭荆瑒t這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.05.一次函數(shù)與反比例函數(shù)在同一個坐標系中的圖象可能是()A. B. C. D.6.如圖,反比例函數(shù)y=-4x的圖象與直線y=-1A.8B.6C.4D.27.計算的結果是()A. B. C. D.18.的一個有理化因式是()A. B. C. D.9.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.10.-2的倒數(shù)是()A.-2 B. C. D.211.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.當點B的對應點D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°12.用鋁片做聽裝飲料瓶,現(xiàn)有100張鋁片,每張鋁片可制瓶身16個或制瓶底45個,一個瓶身和兩個瓶底可配成一套,設用張鋁片制作瓶身,則可列方程()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB為⊙O的弦,C為弦AB上一點,設AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2﹣n2)π,則=______14.設△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點O,△AOB的面積記為S2;…,依此類推,則Sn可表示為________.(用含n的代數(shù)式表示,其中n為正整數(shù))15.如圖,在邊長為3的菱形ABCD中,點E在邊CD上,點F為BE延長線與AD延長線的交點.若DE=1,則DF的長為________.16.某校準備從甲、乙、丙、丁四個科創(chuàng)小組中選出一組,參加區(qū)青少年科技創(chuàng)新大賽,表格反映的是各組平時成績的平均數(shù)(單位:分)及方差S2,如果要選出一個成績較好且狀態(tài)穩(wěn)定的組去參賽,那么應選的組是_____.甲乙丙丁7887s211.20.91.817.如圖,為了測量鐵塔AB高度,在離鐵塔底部(點B)60米的C處,測得塔頂A的仰角為30°,那么鐵塔的高度AB=________米.18.若關于的一元二次方程有實數(shù)根,則的取值范圍是________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.20.(6分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.21.(6分)先化簡:,然后在不等式的非負整數(shù)解中選擇一個適當?shù)臄?shù)代入求值.22.(8分)如圖,在平面直角坐標系中有三點(1,2),(3,1),(-2,-1),其中有兩點同時在反比例函數(shù)的圖象上,將這兩點分別記為A,B,另一點記為C,(1)求出的值;(2)求直線AB對應的一次函數(shù)的表達式;(3)設點C關于直線AB的對稱點為D,P是軸上的一個動點,直接寫出PC+PD的最小值(不必說明理由).23.(8分)如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.24.(10分)如圖所示,某小組同學為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)25.(10分)如圖,點A是反比例函數(shù)y1=4x與一次函數(shù)y2=kx+b在x軸上方的圖象的交點,過點A作AC⊥x軸,垂足是點C,AC=OC.一次函數(shù)求點A的坐標;若梯形ABOC的面積是3,求一次函數(shù)y2=kx+b的解析式;結合這兩個函數(shù)的完整圖象:當y1>26.(12分)在一個不透明的口袋里裝有四個球,這四個球上分別標記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個球沒有任何區(qū)別.從中任取一球,求該球上標記的數(shù)字為正數(shù)的概率;從中任取兩球,將兩球上標記的數(shù)字分別記為x、y,求點(x,y)位于第二象限的概率.27.(12分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數(shù)學解題中常見的一種思想方法,請你解答下列問題:(1)根據(jù)材料1,把c2﹣6c+8分解因式;(2)結合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.2、A【解析】
設該公司第5、6個月投放科研經(jīng)費的月平均增長率為x,5月份投放科研經(jīng)費為1000(1+x),6月份投放科研經(jīng)費為1000(1+x)(1+x),即可得答案.【詳解】設該公司第5、6個月投放科研經(jīng)費的月平均增長率為x,則6月份投放科研經(jīng)費1000(1+x)2=1000+500,故選A.【點睛】考查一元二次方程的應用,求平均變化率的方法為:若設變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關系為a(1±x)2=b.3、C【解析】
過點C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計算即可.【詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點睛】本題考查了勾股定理,解題的關鍵是熟練的掌握勾股定理的運算.4、D【解析】
解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點睛】本題考查眾數(shù);中位數(shù).5、B【解析】當k>0時,一次函數(shù)y=kx﹣k的圖象過一、三、四象限,反比例函數(shù)y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當k<0時,一次函數(shù)y=kx﹣k的圖象過一、二、四象限,反比例函數(shù)y=的圖象在二、四象限,∴D不符合題意.故選B.6、A【解析】試題解析:由于點A、B在反比例函數(shù)圖象上關于原點對稱,則△ABC的面積=2|k|=2×4=1.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義.7、D【解析】
根據(jù)同分母分式的加法法則計算可得結論.【詳解】===1.故選D.【點睛】本題考查了分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.8、B【解析】
找出原式的一個有理化因式即可.【詳解】的一個有理化因式是,故選B.【點睛】此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關鍵.9、D【解析】
根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-4,
系數(shù)化為1,得:x<2,
故選D.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.10、B【解析】
根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點睛】本題難度較低,主要考查學生對倒數(shù)相反數(shù)等知識點的掌握11、C【解析】
由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關鍵.12、C【解析】
設用張鋁片制作瓶身,則用張鋁片制作瓶底,可作瓶身16x個,瓶底個,再根據(jù)一個瓶身和兩個瓶底可配成一套,即可列出方程.【詳解】設用張鋁片制作瓶身,則用張鋁片制作瓶底,依題意可列方程故選C.【點睛】此題主要考查一元一次方程的應用,解題的關鍵是根據(jù)題意找到等量關系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
先確定線段BC過的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結論.【詳解】如圖,連接OB、OC,以O為圓心,OC為半徑畫圓,則將弦AB繞圓心O旋轉(zhuǎn)一周,線段BC掃過的面積為圓環(huán)的面積,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,過O作OD⊥AB于D,∴BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=,∵m>0,n>0,∴m=,∴,故答案為.【點睛】此題主要考查了勾股定理,垂徑定理,一元二次方程等知識,根據(jù)旋轉(zhuǎn)的性質(zhì)確定線段BC掃過的面積是解題的關鍵,是一道中等難度的題目.14、【解析】試題解析:如圖,連接D1E1,設AD1、BE1交于點M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵,∴,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴Sn=.故答案為.15、1.1【解析】
求出EC,根據(jù)菱形的性質(zhì)得出AD∥BC,得出相似三角形,根據(jù)相似三角形的性質(zhì)得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點睛】此題主要考查了相似三角形的判定與性質(zhì),解題關鍵是根據(jù)菱形的性質(zhì)證明△DEF∽△CEB,然后根據(jù)相似三角形的性質(zhì)可求解.16、丙【解析】
先比較平均數(shù)得到乙組和丙組成績較好,然后比較方差得到丙組的狀態(tài)穩(wěn)定,于是可決定選丙組去參賽.【詳解】因為乙組、丙組的平均數(shù)比甲組、丁組大,而丙組的方差比乙組的小,所以丙組的成績比較穩(wěn)定,所以丙組的成績較好且狀態(tài)穩(wěn)定,應選的組是丙組.故答案為丙.【點睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.17、20【解析】
在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.【詳解】在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.故答案為20.【點睛】本題考查的知識點是解三角形的實際應用,解題的關鍵是熟練的掌握解三角形的實際應用.18、【解析】
由題意可得,△=9-4m≥0,由此求得m的范圍.【詳解】∵關于x的一元二次方程x2-3x+m=0有實數(shù)根,∴△=9-4m≥0,求得m≤.故答案為:【點睛】本題考核知識點:一元二次方程根判別式.解題關鍵點:理解一元二次方程根判別式的意義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(1).【解析】
(1)以點M為頂點,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB為等腰為等腰直角三角形,根據(jù)勾股定理求出OA的長,即可求出AM的值.【詳解】(1)作圖如圖所示;(1)由題知△AOB為等腰Rt△AOB,且OB=1,所以,AO=OB=1又M為OA的中點,所以,AM=1=【點睛】本題考查了尺規(guī)作圖,等腰直角三角形的判定,勾股定理等知識,熟練掌握作一個角等于已知角是解(1)的關鍵,證明△AOB為等腰為等腰直角三角形是解(1)的關鍵.20、(1)證明見解析;(2)【解析】
(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后根據(jù)相似三角形的對應邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點,∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點睛】本題考查了切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理的運用;證明某一線段是圓的切線時,一般情況下是連接切點與圓心,通過證明該半徑垂直于這一線段來判定切線.21、;2.【解析】
先將后面的兩個式子進行因式分解并約分,然后計算減法,根據(jù)題意選擇x=0代入化簡后的式子即可得出答案.【詳解】解:原式===的非負整數(shù)解有:2,1,0,其中當x取2或1時分母等于0,不符合條件,故x只能取0∴將x=0代入得:原式=2【點睛】本題考查的是分式的化簡求值,注意選擇數(shù)時一定要考慮化簡前的式子是否有意義.22、(2)2;(2)y=x+2;(3).【解析】
(2)確定A、B、C的坐標即可解決問題;(2)理由待定系數(shù)法即可解決問題;(3)作D關于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′的長.【詳解】解:(2)∵反比例函數(shù)y=的圖象上的點橫坐標與縱坐標的積相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)設直線AB的解析式為y=mx+n,則有,解得,∴直線AB的解析式為y=x+2.(3)∵C、D關于直線AB對稱,∴D(0,4)作D關于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′=.【點睛】本題考查反比例函數(shù)圖象上的點的特征,一次函數(shù)的性質(zhì)、反比例函數(shù)的性質(zhì)、軸對稱最短問題等知識,解題的關鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學會利用軸對稱解決最短問題.23、(1)證明見解析;(2).【解析】
(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;
(2)設圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關于r的方程,求出方程的解即可得到結果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質(zhì),以及勾股定理,熟練掌握切線的判定與性質(zhì)是解本題的關鍵.24、30.3米.【解析】試題分析:過點D作DE⊥AB于點E,在Rt△ADE中,求出AE的長,在Rt△DEB中,求出BE的長即可得.試題解析:過點D作DE⊥AB于點E,在Rt△ADE中,∠AED=90°,tan∠1=,∠1=30°,∴AE=DE×tan∠1=40×tan30°=40×≈40×1.73×≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=,∠2=10°,∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2∴AB=AE+BE≈23.1+7.2=30.3米.25、(1)點A的坐標為(2,2);(2)y=12x+1;(3)x<-4【解析】
(1)點A在反比例函數(shù)y1=4x上,AC⊥x軸,(2)梯形面積=12(OB+2)×2=3,求出B點坐標,將點A(3)結合圖象直接可求解;【詳解】解:(1)∵點A在y1=4x的圖像上,∴AC?OC=4,∴AC=OC=2∴點A的坐標為(2,2);(2)∵梯形ABOC的面積是3,∴12解得OB=1,∴點B的坐標為(0,1),把點A(2,2)與B(0,1)代入y得2=2k+b解得:k=12,∴一次函數(shù)y2=kx+b的解析式為(3)由題意可知,作出函數(shù)y1=4設函數(shù)y1=4∴聯(lián)立y1=4∴點E的坐標為
評論
0/150
提交評論