2023-2024學(xué)年新疆烏魯木齊天山區(qū)重點達標名校中考數(shù)學(xué)最后一模試卷含解析_第1頁
2023-2024學(xué)年新疆烏魯木齊天山區(qū)重點達標名校中考數(shù)學(xué)最后一模試卷含解析_第2頁
2023-2024學(xué)年新疆烏魯木齊天山區(qū)重點達標名校中考數(shù)學(xué)最后一模試卷含解析_第3頁
2023-2024學(xué)年新疆烏魯木齊天山區(qū)重點達標名校中考數(shù)學(xué)最后一模試卷含解析_第4頁
2023-2024學(xué)年新疆烏魯木齊天山區(qū)重點達標名校中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年新疆烏魯木齊天山區(qū)重點達標名校中考數(shù)學(xué)最后一模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.102.某種計算器標價240元,若以8折優(yōu)惠銷售,仍可獲利20%,那么這種計算器的進價為()A.152元 B.156元 C.160元 D.190元3.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.4.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°5.已知二次函數(shù)的與的不符對應(yīng)值如下表:且方程的兩根分別為,,下面說法錯誤的是().A., B.C.當時, D.當時,有最小值6.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形7.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.8.已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設(shè)點運動的時間為,線段的長為.表示與的函數(shù)關(guān)系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.9.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現(xiàn)彩虹10.一個正多邊形的內(nèi)角和為900°,那么從一點引對角線的條數(shù)是()A.3 B.4 C.5 D.611.空氣的密度為0.00129g/cm3,0.00129這個數(shù)用科學(xué)記數(shù)法可表示為()A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣112.計算(ab2)3的結(jié)果是()A.a(chǎn)b5 B.a(chǎn)b6 C.a(chǎn)3b5 D.a(chǎn)3b6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點A′和A,點B′和B分別對應(yīng)).若AB=2,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過A′,B,則k的值為_____.14.如圖,數(shù)軸上不同三點對應(yīng)的數(shù)分別為,其中,則點表示的數(shù)是__________.15.因式分解:2m2﹣8n2=.16.不等式組的解集是__.17.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應(yīng)點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.18.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,當E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當E,F(xiàn)分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.20.(6分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個交點為A,過P(1,﹣m)作PM⊥x軸于點M,交拋物線于點B,點B關(guān)于拋物線對稱軸的對稱點為C(1)若m=2,求點A和點C的坐標;(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標軸上是否存在點E,使得△PEC是以P為直角頂點的等腰直角三角形?若存在,求出點E的坐標;若不存在,請說明理由.21.(6分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數(shù)表達式;設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?22.(8分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機.為了解學(xué)生手機使用情況,某學(xué)校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學(xué)生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.請你根據(jù)以上信息解答下列問題:在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的百分比為,圓心角度數(shù)是度;補全條形統(tǒng)計圖;該校共有學(xué)生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).23.(8分)小丁每天從某報社以每份0.5元買進報紙200分,然后以每份1元賣給讀者,報紙賣不完,當天可退回報社,但報社只按每份0.2元退給小丁,如果小丁平均每天賣出報紙x份,純收入為y元.(1)求y與x之間的函數(shù)關(guān)系式(要求寫出自變量x的取值范圍);(2)如果每月以30天計算,小丁每天至少要買多少份報紙才能保證每月收入不低于2000元?24.(10分)某同學(xué)用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設(shè)AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關(guān)系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?25.(10分)已知是關(guān)于的方程的一個根,則__26.(12分)關(guān)于的一元二次方程有實數(shù)根.求的取值范圍;如果是符合條件的最大整數(shù),且一元二次方程與方程有一個相同的根,求此時的值.27.(12分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項D符合,

故選D.【點睛】本題考查的知識點是折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應(yīng)用,解題關(guān)鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.2、C【解析】【分析】設(shè)進價為x元,依題意得240×0.8-x=20x℅,解方程可得.【詳解】設(shè)進價為x元,依題意得240×0.8-x=20x℅解得x=160所以,進價為160元.故選C【點睛】本題考核知識點:列方程解應(yīng)用題.解題關(guān)鍵點:找出相等關(guān)系.3、D【解析】

先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【點睛】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.4、C【解析】

根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計算公式:扇形的面積=.5、C【解析】

分別結(jié)合圖表中數(shù)據(jù)得出二次函數(shù)對稱軸以及圖像與x軸交點范圍和自變量x與y的對應(yīng)情況,進而得出答案.【詳解】A、利用圖表中x=0,1時對應(yīng)y的值相等,x=﹣1,2時對應(yīng)y的值相等,∴x=﹣2,5時對應(yīng)y的值相等,∴x=﹣2,y=5,故此選項正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時y=﹣1;x=2時,y=1,∴1<x2<2,故此選項正確;C、由題意可得出二次函數(shù)圖像向上,∴當x1<x<x2時,y<0,故此選項錯誤;D、∵利用圖表中x=0,1時對應(yīng)y的值相等,∴當x=時,y有最小值,故此選項正確,不合題意.所以選C.【點睛】此題主要考查了拋物線與x軸的交點以及利用圖像上點的坐標得出函數(shù)的性質(zhì),利用數(shù)形結(jié)合得出是解題關(guān)鍵.6、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.7、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.8、A【解析】

解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點的運動時間成正比.段,逐漸減小,到達最小值時又逐漸增大,排除、選項,段,逐漸減小直至為,排除選項.故選.【點睛】本題考查了動點問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.9、B【解析】分析:根據(jù)必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件:A、打開電視機,正在播放茂名新聞,可能發(fā)生,也可能不發(fā)生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現(xiàn)彩虹,可能發(fā)生,也可能不發(fā)生,故本選項錯誤.故選B.10、B【解析】

n邊形的內(nèi)角和可以表示成(n-2)?180°,設(shè)這個多邊形的邊數(shù)是n,就得到關(guān)于邊數(shù)的方程,從而求出邊數(shù),再求從一點引對角線的條數(shù).【詳解】設(shè)這個正多邊形的邊數(shù)是n,則

(n-2)?180°=900°,

解得:n=1.

則這個正多邊形是正七邊形.所以,從一點引對角線的條數(shù)是:1-3=4.故選B【點睛】本題考核知識點:多邊形的內(nèi)角和.解題關(guān)鍵點:熟記多邊形內(nèi)角和公式.11、C【解析】試題分析:0.00129這個數(shù)用科學(xué)記數(shù)法可表示為1.29×10﹣1.故選C.考點:科學(xué)記數(shù)法—表示較小的數(shù).12、D【解析】試題分析:根據(jù)積的乘方的性質(zhì)進行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設(shè)B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點A′,B,∴m?m=m,∴m=,∴k=故答案為14、1【解析】

根據(jù)兩點間的距離公式可求B點坐標,再根據(jù)絕對值的性質(zhì)即可求解.【詳解】∵數(shù)軸上不同三點A、B、C對應(yīng)的數(shù)分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.【點睛】考查了實數(shù)與數(shù)軸,絕對值,關(guān)鍵是根據(jù)兩點間的距離公式求得B點坐標.15、2(m+2n)(m﹣2n).【解析】試題分析:根據(jù)因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數(shù)的最大公約數(shù)2,進一步發(fā)現(xiàn)提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點:提公因式法與公式法的綜合運用.16、2≤x<1【解析】

分別解兩個不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【點睛】本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.17、或【解析】

由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據(jù)題意,,.若點在矩形ABCD的內(nèi)部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【點睛】本題主要考查了翻折問題和相似三角形判定,靈活運用是關(guān)鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質(zhì);(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據(jù)相似三角形對應(yīng)邊成比例求出三角形的邊長.18、【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質(zhì)與判定、含30°直角三角形的性質(zhì)以及直角三角形斜邊的中線的性質(zhì).此題難度適中,屬于中考常見題型,求出OP的長是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當AE=AC時,設(shè)正方形的邊長為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結(jié)論還成立,有兩種情況:①如圖1,當AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理得,,則;②如圖2,當AE=AC時,設(shè)正方形ABCD的邊長為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點P在運動中保持∠APD=90°,∴點P的路徑是以AD為直徑的圓,如圖3,設(shè)AD的中點為Q,連接CQ并延長交圓弧于點P,此時CP的長度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點睛:此題主要考查了正方形的性質(zhì),勾股定理,圓周角定理,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,能綜合運用性質(zhì)進行推擠是解此題的關(guān)鍵,用了分類討論思想,難度偏大.20、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點的坐標為(2,0)或(,0)或(0,﹣4);【解析】

方法一:(1)m=2時,函數(shù)解析式為y=,分別令y=0,x=1,即可求得點A和點B的坐標,進而可得到點C的坐標;(2)先用m表示出P,AC三點的坐標,分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點F(x,y)是直線PE上任意一點,過點F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點的等腰直角三角形求得E點坐標.方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點的等腰直角三角形,分別討論E點再x軸上,y軸上的情況求得E點坐標.【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當∠ACP=90°時,PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當∠APC=90°時,PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點F(x,y)是直線PE上任意一點,過點F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點,使得△PEC是以P為直角頂點的等腰直角三角形,此時E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點E,使得△PEC是以P為直角頂點的等腰直角三角形,此時E(0,﹣4),∴在坐標軸上是存在點E,使得△PEC是以P為直角頂點的等腰直角三角形,E點的坐標為(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵對稱軸x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP為直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴KAP×KCP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴KCP=,△PEC是以P為直角頂點的等腰直角三角形,∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,∵P(1,﹣m),∴l(xiāng)PE:y=2x﹣2﹣m,∵點E在坐標軸上,∴①當點E在x軸上時,E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E1(2,0),E2(,0),②當點E在y軸上時,E(0,﹣2﹣m)且PE=PC,∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴1=(m﹣1)2,∴m1=2,m2=0(舍),∴E(0,4),綜上所述,(2,0)或(,0)或(0,﹣4).【點睛】本題主要考查二次函數(shù)的圖象與性質(zhì).擴展:設(shè)坐標系中兩點坐標分別為點A(),點B(),則線段AB的長度為:AB=.設(shè)平面內(nèi)直線AB的解析式為:,直線CD的解析式為:(1)若AB//CD,則有:;(2)若AB⊥CD,則有:.21、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解析】

(1)用待定系數(shù)法求一次函數(shù)的表達式;(2)利用利潤的定義,求與之間的函數(shù)表達式;(3)利用二次函數(shù)的性質(zhì)求極值.【詳解】解:(1)設(shè),由題意,得,解得,∴所求函數(shù)表達式為.(2).(3),其中,∵,∴當時,隨的增大而增大,當時,隨的增大而減小,當售價為70元時,獲得最大利潤,這時最大利潤為1800元.考點:二次函數(shù)的實際應(yīng)用.22、(1)35%,126;(2)見解析;(3)1344人【解析】

(1)由扇形統(tǒng)計圖其他的百分比求出“玩游戲”的百分比,乘以360即可得到結(jié)果;(2)求出3小時以上的人數(shù),補全條形統(tǒng)計圖即可;(3)由每周使用手機時間在2小時以上(不含2小時)的百分比乘以2100即可得到結(jié)果.【詳解】(1)根據(jù)題意得:1﹣(40%+18%+7%)=35%,則“玩游戲”對應(yīng)的圓心角度數(shù)是360°×35%=126°,故答案為35%,126;(2)根據(jù)題意得:40÷40%=100(人),∴3小時以上的人數(shù)為100﹣(2+16+18+32)=32(人),補全圖形如下:;(3)根據(jù)題意得:2100×=1344(人),則每周使用手機時間在2小時以上(不含2小時)的人數(shù)約有1344人.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,準確識圖,從中找到必要的信息進行解題是關(guān)鍵.23、(1)y=0.8x﹣60(0≤x≤200)(2)159份【解析】解:(1)y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)=0.8x﹣60(0≤x≤200).(2)根據(jù)題意得:30(0.8x﹣60)≥2000,解得x≥.∴小丁每天至少要買159份報紙才能保證每月收入不低于2000元.(1)因為小丁每天從某市報社以每份0.5元買出報紙200份,然后以每份1元賣給讀者,報紙賣不完,當天可退回報社,但報社只按每份0.2元退給小丁,所以如果小丁平均每天賣出報紙x份,純收入為y元,則y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)即y=0.8x﹣60,其中0≤x≤200且x為整數(shù).(2)因為每月以30天計,根據(jù)題意可得30(0.8x﹣60)≥2000,解之求解即可.24、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.【解析】分析:(1)根據(jù)平移的性質(zhì)得到DF∥AC,所以由平行線的性質(zhì)、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關(guān)系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當D運動到AB中點時,四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內(nèi)角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論