版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年浙江省重點中學中考數(shù)學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊2.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個3.一副直角三角板如圖放置,其中,,,點F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°4.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.5.下列說法不正確的是()A.某種彩票中獎的概率是,買1000張該種彩票一定會中獎B.了解一批電視機的使用壽命適合用抽樣調(diào)查C.若甲組數(shù)據(jù)的標準差S甲=0.31,乙組數(shù)據(jù)的標準差S乙=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定D.在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件6.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°7.下列圖案是軸對稱圖形的是()A. B. C. D.8.如圖,在平行四邊形ABCD中,∠ABC的平分線BF交AD于點F,F(xiàn)E∥AB.若AB=5,AD=7,BF=6,則四邊形ABEF的面積為()A.48 B.35 C.30 D.249.估計的運算結(jié)果應在哪個兩個連續(xù)自然數(shù)之間()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣410.如圖所示,在矩形ABCD中,AB=6,BC=8,對角線AC、BD相交于點O,過點O作OE垂直AC交AD于點E,則DE的長是()A.5 B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.12.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.13.已知:如圖,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.14.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),使AE=CF,連接AF、BE相交于點P,當點E從點A運動到點C時,點P經(jīng)過點的路徑長為__.15.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.16.如圖,將三角形AOC繞點O順時針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結(jié)果保留π)三、解答題(共8題,共72分)17.(8分)在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).畫出△ABC關于軸對稱的△A1B1C1;以M點為位似中心,在網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1.18.(8分)在學習了矩形這節(jié)內(nèi)容之后,明明同學發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點P為AB邊上的定點,且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動點E,當?shù)闹凳嵌嗌贂r,△PDE的周長最小?如圖(3),點Q是邊AB上的定點,且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長交AB的延長線于點F,連接CF,G為CF的中點,M、N分別為線段QF和CD上的動點,且始終保持QM=CN,MN與DF相交于點H,請問GH的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.19.(8分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).(1)求拋物線的解析式及其頂點D的坐標;(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.20.(8分)某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.請根據(jù)以上信息解答下列問題:課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應的圓心角的度數(shù)為______;請補全條形統(tǒng)計圖;該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.21.(8分)如圖,在Rt△ABC中,,點在邊上,⊥,點為垂足,,∠DAB=450,tanB=.(1)求的長;(2)求的余弦值.22.(10分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.23.(12分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計圖(圖11-2),根據(jù)圖表中的信息解答下列問題:分組
分數(shù)段(分)
頻數(shù)
A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數(shù)和m的值;(2)直接學出該班學生的中考體育成績的中位數(shù)落在哪個分數(shù)段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.24.為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學生人數(shù)為
人,參加球類活動的人數(shù)的百分比為
(2)請把圖2(條形統(tǒng)計圖)補充完整;
(3)該校學生共600人,則參加棋類活動的人數(shù)約為.
(4)該班參加舞蹈類活動的4位同學中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準備從中選取兩名同學組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.2、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).3、D【解析】
直接利用三角板的特點,結(jié)合平行線的性質(zhì)得出∠BDE=45°,進而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故選D.【點睛】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關鍵.4、D【解析】
連接OC、OD、BD,根據(jù)點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.5、A【解析】試題分析:根據(jù)抽樣調(diào)查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎的概率是,只是一種可能性,買1000張該種彩票不一定會中獎,故錯誤;B、調(diào)查電視機的使用壽命要毀壞電視機,有破壞性,適合用抽樣調(diào)查,故正確;C、標準差反映了一組數(shù)據(jù)的波動情況,標準差越小,數(shù)據(jù)越穩(wěn)定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點:1.概率公式;2.全面調(diào)查與抽樣調(diào)查;3.標準差;4.隨機事件.6、A【解析】
根據(jù)∠ABD=35°就可以求出的度數(shù),再根據(jù),可以求出,因此就可以求得的度數(shù),從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數(shù)都是70°,∵BD為直徑,∴的度數(shù)是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數(shù)也是110°,∴的度數(shù)是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點睛】本題考查了等腰三角形性質(zhì)、圓周角定理,主要考查學生的推理能力.7、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.8、D【解析】分析:首先證明四邊形ABEF為菱形,根據(jù)勾股定理求出對角線AE的長度,從而得出四邊形的面積.詳解:∵AB∥EF,AF∥BE,∴四邊形ABEF為平行四邊形,∵BF平分∠ABC,∴四邊形ABEF為菱形,連接AE交BF于點O,∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,則四邊形ABEF的面積=6×8÷2=24,故選D.點睛:本題主要考查的是菱形的性質(zhì)以及判定定理,屬于中等難度的題型.解決本題的關鍵就是根據(jù)題意得出四邊形為菱形.9、C【解析】根據(jù)二次根式的性質(zhì),可化簡得=﹣3=﹣2,然后根據(jù)二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之間.故選C.點睛:此題主要考查了二次根式的化簡和估算,關鍵是根據(jù)二次根式的性質(zhì)化簡計算,再二次根式的估算方法求解.10、C【解析】
先利用勾股定理求出AC的長,然后證明△AEO∽△ACD,根據(jù)相似三角形對應邊成比例列式求解即可.【詳解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故選:C.【點睛】本題考查了矩形的性質(zhì),勾股定理,相似三角形對應邊成比例的性質(zhì),根據(jù)相似三角形對應邊成比例列出比例式是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2﹣【解析】
過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點睛】本題考查了扇形的面積公式和長方形性質(zhì)的應用,關鍵是根據(jù)圖形的對稱性分析,主要考查學生的計算能力.12、(或)【解析】
將拋物線化為頂點式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉(zhuǎn)化頂點式的能力.13、2﹣π.【解析】試題分析:根據(jù)題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據(jù)∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.14、π.【解析】
由等邊三角形的性質(zhì)證明△AEB≌△CFA可以得出∠APB=120°,點P的路徑是一段弧,由弧線長公式就可以得出結(jié)論.【詳解】:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴當AE=CF時,點P的路徑是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
點P的路徑是l=,
故答案為.【點睛】本題考查了等邊三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,弧線長公式的運用,解題的關鍵是證明三角形全等.15、.【解析】
連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據(jù)勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質(zhì),勾股定理的應用等知識;綜合性比較強.16、5π【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為:5π.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關鍵.三、解答題(共8題,共72分)17、(1)詳見解析;(2)詳見解析.【解析】
試題分析:(1)直接利用關于x軸對稱點的性質(zhì)得出對應點位置,進而得出答案;(2)直接利用位似圖形的性質(zhì)得出對應點位置,進而得出答案;試題解析:(1)如圖所示:△A1B1C1,即為所求;(2)如圖所示:△A2B2C2,即為所求;考點:作圖-位似變換;作圖-軸對稱變換18、(1)證明見解析(2)(3)【解析】
(1)根據(jù)題中“完美矩形”的定義設出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對稱的性質(zhì)得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質(zhì)得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對應邊相等得到FH=DH,再由G為CF中點,得到HG為中位線,利用中位線性質(zhì)求出GH的長即可.【詳解】(1)在圖1中,設AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點,∴GH是△CFD的中位線,∴GH=CD=×2=.【點睛】此題屬于相似綜合題,涉及的知識有:相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形中位線性質(zhì),平行線的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解本題的關鍵.19、(1)y=﹣(x﹣1)2+9,D(1,9);(2)p=﹣1;(3)存在點Q(2,1)使△QBC的面積最大.【解析】分析:(1)把點B的坐標代入y=ax2+2x+1求得a的值,即可得到該拋物線的解析式,再把所得解析式配方化為頂點式,即可得到拋物線頂點D的坐標;(2)由題意可知點P在直線CD上時,|PC﹣PD|取得最大值,因此,求得點C的坐標,再求出直CD的解析式,即可求得符合條件的點P的坐標,從而得到p的值;(3)由(1)中所得拋物線的解析式設點Q的坐標為(m,﹣m2+2m+1)(0<m<4),然后用含m的代數(shù)式表達出△BCQ的面積,并將所得表達式配方化為頂點式即可求得對應點Q的坐標.詳解:(1)∵拋物線y=ax2+2x+1經(jīng)過點B(4,0),∴16a+1+1=0,∴a=﹣1,∴拋物線的解析式為y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵當x=0時,y=1,∴C(0,1).設直線CD的解析式為y=kx+b.將點C、D的坐標代入得:,解得:k=1,b=1,∴直線CD的解析式為y=x+1.當y=0時,x+1=0,解得:x=﹣1,∴直線CD與x軸的交點坐標為(﹣1,0).∵當P在直線CD上時,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如圖,由(2)知,C(0,1),∵B(4,0),∴直線BC的解析式為y=﹣2x+1,過點Q作QE∥y軸交BC于E,設Q(m,﹣m2+2m+1)(0<m<4),則點E的坐標為:(m,﹣2m+1),∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,∴m=2時,S△QBC最大,此時點Q的坐標為:(2,1).點睛:(1)解第2小題時,知道當點P在直線CD上時,|PC﹣PD|的值最大,是找到解題思路的關鍵;(2)解第3小題的關鍵是設出點Q的坐標(m,﹣m2+2m+1)(0<m<4),并結(jié)合點B、C的坐標把△BCQ的面積用含m的代數(shù)式表達出來.20、(1)144°;(2)補圖見解析;(3)160人;(4)這個說法不正確,理由見解析.【解析】
試題分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案為144°;(2)“經(jīng)常參加”的人數(shù)為:300×40%=120人,喜歡籃球的學生人數(shù)為:120﹣27﹣33﹣20=120﹣80=40人;補全統(tǒng)計圖如圖所示;(3)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù)約為:1200×=160人;(4)這個說法不正確.理由如下:小明得到的108人是經(jīng)常參加課外體育鍛煉的男生中最喜歡的項目是乒乓球的人數(shù),而全校偶爾參加課外體育鍛煉的男生中也會有最喜歡乒乓球的,因此應多于108人.考點:①條形統(tǒng)計圖;②扇形統(tǒng)計圖.21、(1)3;(2)【解析】分析:(1)由題意得到三角形ADE為等腰直角三角形,在直角三角形DEB中,利用銳角三角函數(shù)定義求出DE與BE之比,設出DE與BE,由AB=7求出各自的值,確定出DE即可;(2)在直角三角形中,利用勾股定理求出AD與BD的長,根據(jù)tanB的值求出cosB的值,確定出BC的長,由BC﹣BD求出CD的長,利用銳角三角函數(shù)定義求出所求即可.詳解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,設DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;(2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值為.點睛:本題考查了解直角三角形,涉及的知識有:銳角三角函數(shù)定義,勾股定理,等腰直角三角形的判定與性質(zhì),熟練掌握各自的性質(zhì)是解答本題的關鍵.22、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由已知條件易得∠EAG=∠FCG,AG=GC結(jié)合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結(jié)合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB,AE=CN,從而可得AB=CB,由此可得BE=BN.詳解:(1)∵四邊形ABCD為平行四四邊形邊形,∴AB//CD.∴∠EAG=∠FCG.∵點G為對角線AC的中點,∴AG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度采光井玻璃更換與維護合同3篇
- 二零二五年度氣象站氣象數(shù)據(jù)安全保障合同3篇
- 2024蘇州租賃合同含寵物飼養(yǎng)及養(yǎng)護服務條款3篇
- 2024版民間借貸合同范例
- 2025年度茶樓裝修工程消防設施合同范本4篇
- 2025年度10kv配電站施工期間質(zhì)量檢測與驗收合同正規(guī)范本3篇
- 2025年度教育機構(gòu)LOGO知識產(chǎn)權許可合同范本3篇
- 2025年度智能物流系統(tǒng)全國代理銷售合同4篇
- 2025年度廠房施工合同施工人員培訓協(xié)議(新版)3篇
- 2025年度智能工廠改造裝修合同模板3篇
- 小學四年級數(shù)學知識點總結(jié)(必備8篇)
- GB/T 893-2017孔用彈性擋圈
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 醫(yī)學會自律規(guī)范
- 商務溝通第二版第4章書面溝通
- 950項機電安裝施工工藝標準合集(含管線套管、支吊架、風口安裝)
- 微生物學與免疫學-11免疫分子課件
- 《動物遺傳育種學》動物醫(yī)學全套教學課件
- 弱電工程自檢報告
- 民法案例分析教程(第五版)完整版課件全套ppt教學教程最全電子教案
評論
0/150
提交評論