




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE
10
CHAPTER12
THERMALENERGYSTORAGETECHNOLOGIES
CliffordK.HoandAndreaAmbrosini,SandiaNationalLaboratories
Abstract
Thermalstoragetechnologieshavethepotentialtoprovidelargecapacity,long-durationstoragetoenablehighpenetrationsofintermittentrenewableenergy,flexibleenergygenerationforconventionalbaseloadsources,andseasonalenergyneeds.Thermalstorageoptionsincludesensible,latent,andthermochemicaltechnologies.Sensiblethermalstorageincludesstoringheatinliquidssuchasmoltensaltsandinsolidssuchasconcreteblocks,rocks,orsand-likeparticles.Latentheatstorageinvolvesstoringheatinaphase-changematerialthatutilizesthelargelatentheatofphasechangeduringmeltingofasolidtoaliquid.Thermochemicalstorageconvertsheatintochemicalbonds,whichisreversibleandbeneficialforlong-termstorageapplications.Currentresearchineachofthethermalstoragetechnologiesisdescribed,alongwithremainingchallengesandfutureopportunities.
KeyTerms
Thermalstorage,sensiblestorage,latentstorage,thermochemicalstorage,long-durationstorage
Introduction
Increasingpenetrationsofintermittentrenewableenergysources(e.g.,photovoltaics[PV]andwindenergy)haveincreasedtheneedforenergystoragetechnologiestoaccommodatedailyperiodsofovergenerationandpeakloads.Thesediurnalenergy-storagerequirementsarecategorizedinthischapterasshort-durationandspanperiodsfromsecondstohourswithcapacitiesrangingfromkilowattstogigawatts.Previousstudieshavesuggestedthatthedecreasingcostsofbatteriesandassociatedtechnologiesmayenablebatterysystemstomeettheshort-durationneedsofthegridwithhighpenetrationsofintermittentrenewableenergysystems[1,2].However,recentstudieshaveshownthatlong-durationenergystorage(daystomonths)willbeneededtoaccommodate100%renewable(orcarbon-free)energygeneration[3].Inaddition,long-durationenergystoragewillbeneededtoincreasethesecurityandresilienceoftheelectricalgridinthefaceofincreasingnaturaldisastersandintentionalthreats.
ThermalStorageApplications
Figure1
showsachartofcurrentenergystoragetechnologiesasafunctionofdischargetimesandpowercapacityforshort-durationenergystorage[4].Withintherangeofshort-durationenergystoragecapacities,applicationsincludereserveandresponseservices(1–100kW),transmissionanddistributionsupportgrid(100kW–10MW),andbulkpowermanagement(10MW–1GW).Althoughthermalstoragetechnologyisincludedinthechartascryogenicenergystorage,hotthermalstorageusingsensible,latent,orthermochemicalmethods[5,6]isnotshown.Commercialconcentratingsolarpower(CSP)usingsensibleheatstoragehasdemonstratedtheabilitytoprovideontheorderof100MWofpowercapacityover10hours(~1GWh)forbothgridsupportandbulkpowermanagement.
Thermalstoragetechnologiesarealsobeingconsideredfornuclearpowerplantstoincreasetheflexibilityofthesetraditionallybaseloadsystems[6].Attimesoflowornegativeelectricityprices,
Chapter12ThermalEnergyStorage
heat(orelectricity)generatedbythenuclearreactorwouldbesenttothermalstorage.Attimesofhighelectricityprices,theheatfromthereactorandthermalstoragewouldbeusedtoproducemaximumelectricityoutput(
Figure2
).NewGenerationIVnuclearreactorsdeliverhighertemperaturestothepowercyclerelativetowater-cooledreactors,whichisbeneficialforthermalstoragebecauseathighertemperatures,lessstoragematerialisrequiredtodeliveradesiredamountofthermalpower.Inaddition,thehighertemperaturesenablemoreefficientthermal-to-electricpowerconversion.Addingthermalenergystoragetogeothermalpowerplantstoincreaseflexibilityanddispatchabilityhasalsobeenconsidered[7].
Figure1.Dischargetimeandcapacityofvariousenergystoragetechnologies[4].Hotthermalstoragetechnologiesarenotshownbutcanprovidehundredsofmegawattsformanyhours
Chapter12ThermalEnergyStorage
Figure2.Diagramillustratinghowthermalstoragecanincreasetheflexibilityoftraditionalbaseloadpowerplantsthatrelyonthermalenergy[6].
TechnologyOverview
Theremainderofthischapterprovidesasummaryofthermalstoragetechnologies,whichcanincludesensible,latent,andthermochemicalsystems.Sensiblestoragereliesonatemperaturedifferencewithinthestoragemediumtoenableusefulworktobeperformed,suchasusinghotmoltensalttoheatwaterandgeneratesteamtospinaturbineforelectricityproduction.Latentstorageinvolvesstoringheatinaphase-changematerialthatutilizesthelargelatentheatofphasechange,forexample,duringisothermalmeltingofasolidtoaliquid,whichrequiresheat,andsubsequentfreezingoftheliquidtoasolid,whichreleasesheat,isothermally.Thermochemicalenergystorage(TCES)reversiblyconvertsheatintochemicalbondsusingareactivestoragemedium.Whentheenergyisneeded,areversereactioncombinesthereactants,releasingenergy.
Table1
summarizesthedifferentthermalstoragetechnologiesandkeyattributes.
Table1.Summaryofthermalstoragetechnologies
SensibleHeatStorage
[5,8-12]
LatentHeatStorage
[5,9,10,12,13]
ThermochemicalStorage
[9,11,13]
Storagemechanism
Energystoredastemperaturedifferenceinsolid(e.g.,concrete,rock,sand)orliquidmedia
(moltensalt)
Energystoredusingphasechangematerials(e.g.,salts,metals,organics)
Energystoredinchemicalbonds
EnergyDensity
~200–500kJ/kg(for
~200–400°C
temperaturedifferential)
~100–200kJ/kgfornitratesalts;~200–500kJ/kgformetals;~1000
kJ/kgforfluoridesalts
~300–6,000kJ/kg
Chapter12ThermalEnergyStorage
SensibleHeatStorage
[5,8-12]
LatentHeatStorage
[5,9,10,12,13]
ThermochemicalStorage
[9,11,13]
Advantages
Demonstratedlargeenergycapacity(~GWh)
Inexpensivemedia
Solidmediadoesnotfreezeandcanachieve
>1000°C
GoodforisothermalorlowTapplications
Canprovidelargeenergydensitywithcombinedsensibleandlatentheatstorage
Largeenergydensities
Smallheatlosses
Potentialforlong-termstorage
Compactstoragesystem
OxideTCESStableathightemperatures(>
1000°C)
Challenges
Requiresinsulationtomitigateheatlosses
Lowerenergydensityrequireslargervolumes
Moltensaltsfreezeat
~200°C.
Potentialforcorrosion
ForlargerT,mayneedcascadedsystems(addscostsandcomplexity)
Lowmaturity
Highercomplexity
Lowmaturity
Highercapitalcosts
Mayrequirestorageofgaseousproducts
Maturity
High
Low
Low
Cost
~$1/kgformoltensaltsandceramicparticles
~$0.1/kgforrockandsands
~$1/MJ–$10/MJ(systemcapitalcost)
~$4/kg–$300/kg
~$10/MJ–$100/MJ(systemcapitalcost)
~$10/MJ–$100/MJ(systemcapitalcost)
StateofCurrentTechnology
Sensibleheatstorage
Sensibleheatstorageconsistsofheatingamaterialtoincreaseitsinternalenergy.Theresultingtemperaturedifference,togetherwiththermophysicalproperties(density,specificheat)andvolumeofstoragematerial,determineitsenergycapacity(JorkWh):
Esensible
=ρV
THc
∫
TC p
(T)dT
(1)
Desirablefeaturesofsensiblestoragematerialsincludelargedensities,ρ(kg/m3),largespecificheats,cp(J/kg-K),andlargetemperaturedifferencesbetweenthehotandcoldstates,TH–TC(K).Keyadvantagesincludealowcostofsensiblestoragematerials,highmaturitylevel,andlargeenergycapacities.
Table2
providesasummaryofthermophysicalpropertiesofvarioussensiblesolidandliquidstoragemedia.
Chapter12ThermalEnergyStorage
Table2.Thermophysicalpropertiesofsensiblestoragemedia(adaptedfrom[5]).Calculationofvolumetricandgravimetricstoragedensitiesassumeatemperaturedifferentialof350°C.
StorageMedium
SpecificHeat(kJ/kg-K)
Density(kg/m3)
TemperatureRange(°C)Cold Hot
GravimetricStorageDensity
(kJ/kg)
VolumetricStorageDensity(MJ/m3)
Solids
Concrete
0.9
2200
200
400
315
693
Sinteredbauxiteparticles
1.1
2000
400
1000
385
770
NaCI
0.9
2160
200
500
315
680
Castiron
0.6
7200
200
400
210
1512
Caststeel
0.6
7800
200
700
210
1638
Silicafirebricks
1
1820
200
700
350
637
Magnesiafirebricks
1.2
3000
200
1200
420
1260
Graphite
1.9
1700
500
850
665
1131
Aluminumoxide
1.3
4000
200
700
455
1820
Slag
0.84
2700
200
700
294
794
Liquids
Nitratesalts
(ex.KNO3-0.46NaNO3)
1.6
1815
300
600
560
1016
TherminolVP-1?
2.5
750
300
400
875
656
Siliconeoil
2.1
900
300
400
735
662
Carbonatesalts
1.8
2100
450
850
630
1323
CaloriaHT-43?
2.8
690
150
316
980
676
Sodiumliquidmetal
1.3
960
316
700
455
437
Na-0.79Kmetaleutectic
1.1
900
300
700
385
347
Hydroxidesalts(ex.NaOH)
2.1
1700
350
1100
735
1250
Silicon
0.71
2300
1900
2400
250
575
CommercialCSPplantsthatemploysensiblethermalstoragewithover1GWhofstoragehavebeendeployedworldwide.Forcomparison,Figure3showsthetotalnumberoflarge-scalebatterydemonstrationfacilitiesintheUnitedStatesattheendof2017alongwithtwoCSPplants.EachCSPplantprovidesmoreenergystoragecapacitythanall~100PVdemonstrationfacilitiescombined.
Chapter12ThermalEnergyStorage
1800
1600
EnergyStorageCapacity(MWh)
1400
1200
1000
800
600
400
200
0
Large-ScaleBatteryStorage(~100plantsinU.S.atendof2017)
CrescentDunesCSPPlant(molten-saltstorage)
1680
1100
742
SolanaCSPPlant(molten-saltstorage)
Figure3.ComparisonofenergystoragecapacityforbatteryandCSPplants.Batterydatafrom
U.S.EnergyInformationAdministration[14].
CurrentImplementation
Currentimplementationofhigh-temperaturesensibleheatstorageforelectricityproductionusesliquids(e.g.,moltensalts)andsolids(concrete,rocks).
Liquid
Moltennitratesalt(60%NaNO3,40%KNO3)isbeingusedincommercialCSPplantsaroundtheworldtoprovidegigawatt-hoursofthermalenergystorage.Ithasalowvaporpressure,soitisnotpressurizedattypicalstoragetemperaturesupto~600°C,anditcanbepumpedfromonelocationtoanother.
Figure4showsaphotographandschematicofthe110MWCrescentDunesCSPplantwith1.1GWhofthermalstorageusingmoltennitratesalt.Moltensaltisheatedinareceiverontopofatowerbyconcentratedsunlightfromafieldofheliostats.Thehotmoltensalt(~565°C)flowstoahotstoragetank(righttankinFigure4).Whenneeded,moltensaltispumpedfromthehotstoragetanktoaheatexchangerwhereitheatswaterandgeneratessteamtospinaturbine/generatorforelectricity.Thecooledmoltensalt(~300°C)ispumpedtoacoldstoragetank(lefttankinFigure4)andbacktothereceivertobeheatedwhenthesunisshining.CSPplantscanoperatewithlargecapacityfactors(70–80%)andprovidedispatchableenergy.
Chapter12ThermalEnergyStorage
SolartoThermalConversion ThermalStorage ElectricityGeneration
SolarThermal
Receiver
HotStorage
HeatExchanger
PowerBlock
HeliostatField ColdStorage
Figure4.Top:110MWCrescentDunesCSPplantwith1.1GWhofthermalstorageusingmoltennitratesalt[15].Bottom:Schematicofsensibletwo-tankthermalstoragesysteminaCSPplant.
Solid
Solidthermalstoragehasbeenusedinseveralcommercialanddemonstrationfacilities.In2011,GraphiteEnergydevelopeda3MWeCSPplantinLakeCargelligoinNewSouthWales,Australia,thatusedgraphiteblocksinthereceiversontopofmultipletowers.Thegraphiteblocksinthereceiver,irradiatedbyconcentratedsunlight,servedasboththestoragesystemandboilertogeneratesteamforpowerproduction.
EnergyNest,basedinNorway,developedaconcrete-basedthermalenergystoragesystemthatconsistsofanarrayofmodularpipesfilledwithconcreteandsteeltubes.Thetubescarryheat-transferfluidthatcanheattheconcretewhenchargingandextractheatfromtheconcretewhendischargingtopoweraturbine/generatororprovideprocessheating.Thesystemcancharge/dischargein~30minutesandthestoredenergycanlastforseveraldayswithlessthan2%heatlossper24hoursforlarge-scalesystems.
Chapter12ThermalEnergyStorage
SiemensGamesainGermanyhasdevelopeda130MWhtElectricThermalEnergyStorage(ETES)systemcomprisesrocksstoredinabuilding.Airisresistivelyheatedusingelectricity(whenpriceislow)andpasseddirectlythroughthebedofrocks.Therocksareheatedto~600°C,and,whenneeded,airispassedthroughthehotrockstoheatsteamforaRankinepowercycle.The130MWhtdemonstrationplantbecameoperationalin2019,andthecompanyisplanningadesignfora30MWcommercialpilotplant.
Challenges
Therelativelylowenergydensityofsensible-heatstoragematerialsrequireslargevolumesofmaterialforlarge-capacityenergystorage,whichincreasestheoverallstoragecost.Inaddition,somepowercyclesthatemployrecuperationtoincreasethethermal-to-electricefficiencyrequirerelativelylowtemperaturedifferentialsbetweenthehotandcoldstatesofthestoragematerial.Forexample,thesupercriticalCO2recompressionBraytoncyclerequiresatemperatureincreaseofonly~200°Cintheprimaryheatexchanger[16].Asaresult,therequiredmassinventoryofstoragematerialmustincreasetodeliverthesameamountofenergyforalowertemperaturedifferential,whichincreasescosts.ThetargetcapitalcostfortheU.S.DepartmentofEnergy(DOE)CSPprogramis$15/kWhfortheentirethermalstoragesystem.
Moltensaltsfreezeat>200°C,whichrequiresexpensivetraceheatingtomaintainallcomponentsattemperatureswellabovethefreezingpoint.Ifthesaltfreezes,flowcanbeblocked,andthawingmustoccurbeforeoperationcanbegin.StresswithinthelargestoragetankshasalsocausedissuesatCSPplants.Thermalgradientsatthebaseofthetankcancreatethermomechanicalstressesthatdamagethetankstructure.Appropriateconsiderationofthermomechanicalstressesiscriticaltothedesignoflarge-scalethermalstoragetanks.
Opportunities
Anumberofinstitutionshavebeenpursuingsmall,sand-likeparticle-basedthermalstorageforCSPplantsandstand-alonethermalenergystoragesystems.Unliketheprevioussolid-basedthermalstoragesystems,ratherthanpassingairoraheat-transferfluidthroughthestoragemedia,theparticlesareheateddirectlyandconveyedthroughaheatexchangertoheattheworkingfluid[8].Theparticlesareliftedtothetopofthereceiverwheretheyareirradiatedandheatedbyconcentratedsunlight.Thehotparticlesflowintoaninsulatedstoragetankwheretheycanbeheldforhoursordays.Whenneeded,theparticlesarereleasedthroughaparticleheatexchangertoheataworkingfluidthatspinsaturbine/generatorforelectricityproduction(
Figure5
).
Chapter12ThermalEnergyStorage
Particleelevator
Particlehot
storagetank
Particle-to-working-fluidheat
exchanger
Particlecold
storagetank
Particlecurtain
Particlecurtain
Apertur
Aperture
Fallingparticlereceiver
Figure5.Illustrationofahigh-temperaturefallingparticlereceiverwithtower-integratedstorageandheat-exchangerfordispatchableelectricityproduction[17]
Liketheothersolid-basedthermalstoragetechnologies,inexpensiveparticlestoragecanaccommodateincreasingpenetrationsofrenewablesbyallowingheattobestoredwhenelectricitydemandislow,andthenusingthatstoredheattoproduceelectricitywhendemandandpricesarehigher.Thistime-shiftingofenergyproductionandusecanincreasetheflexibilityoftraditionalbaseloadpowerplants,includingnuclearandgeothermal.
Solidstoragemediahastheadvantageofbeinginert,inexpensive,non-corrosive,andeasytohandle.Inaddition,manysolidmaterialsexhibitamuchwideroperatingtemperaturerangethanmoltensalts.Rock,sand,andsinteredbauxitehaveallbeenutilizedinthermalstoragesystemsandcanoperateinsub-freezingto>1000°Ctemperatures.Largevolumesofbulksolidmaterialcanalsoprovideself-insulationfromthecoolerambientenvironment.Asthevolumeofthebulkstoragetankincreases,theratioofitssurfaceareatovolumedecreases,whichreducesheatloss.So,largestoragetanksorcontainmentsystemsyieldbothperformancebenefitsandeconomiesofscale.
Pumpedthermalenergystorageuseselectricityinaheatpumptotransfersheatfromacoldreservoirtoahotreservoirsimilartoarefrigerator.Whenelectricityisneeded,theheatpumpisreversedtoallowtheheatfromthehotreservoirtodriveaheatengineandspinaturbine/generator.Thelargepotentialtemperaturedifferencesbetweenthehotandcoldreservoirscanenablehighlyefficientpowercycles.Malta,aspinofffromGoogleX,isdesigningapumped-thermalenergystoragesystem(Figure6).
Chapter12ThermalEnergyStorage
Figure6.Malta’spumpedthermalenergystorageconcept[Malta,2020#13799]
MITisinvestigatinganotherstoragetechnologythatwouldusecheaporexcesselectricitytosensiblyheatmoltensilicontoultra-hightemperaturesinlarge,insulatedgraphitetanks.Themoltensiliconwouldbeheldat“cold”temperaturesof~1900°C(aboveitsmeltingpointof1414°C)andheatedwithelectricalheatingelementstonearly2400°C,whereitisstoredinasecond“hot”tank.Whenelectricityisneeded,themoltensiliconispumpedfromthehottankthroughtubesthatemitthermalradiationtomultijunctionphotovoltaiccellsthatgenerateelectricity.Thecooledmoltensiliconisthencollectedinthecoldstoragetank.
Latentheatstorage
Latentheatstoragesystemsusethelatentheatofphasechangetostoreenergy.Latentheatoffusionistheenergyrequiredtochangethestateofsubstancefromasolidtoaliquid,andlatentheatofevaporationistheenergyrequiredtochangethestateofsubstancefromaliquidtoagas.Saltsandmetalscanbemelted,andthecombinedsensibleandlatentheatcanbeusedtostoretheaddedthermalenergy.
Table3
summarizesthethermophysicalpropertyvaluesofdifferentlatent-heatstoragematerials.Thelatentheatofreaction(kJ/kg)showninthesecondcolumnwouldbeaddedtothesensibleheatcapacityinEq.(1)todeterminethetotalheatcapacityoflatentheatstoragematerialsbeingheatedfromonestatetoanother.Inmostcases,thematerialsaresolid/liquidphasechangematerialsthatarestoredasliquidsthatcansubsequentlyreleaseenergywhenconvertedbacktoasolidstate.Someliquid/gassubstances(nitrogenandoxygen)arealsoshownbecausecryogenic“l(fā)iquidair”storagehasalsobeendemonstratedforgridenergystorageapplications.
Chapter12ThermalEnergyStorage
Table3.Thermophysicalpropertiesofphase-changestoragematerialsatstandardconditions,unlessotherwisenoted(adaptedfrom[5])
StorageMedium
SpecificHeat(kJ/kg-K)
LatentorReactionHeat
(kJ/kg)
Density(kg/m3)
MeltingPoint(°C)
BoilingPoint(°C)
GravimetricStorageDensity(kJ/kg)
VolumetricStorageDensity
(MJ/m3)
Liquid/SolidPhaseChangeMaterials
Aluminum
1.2
397
2380
660
-
397
945
Aluminumalloys(ex.Al-0.13Si)
1.5
515
2250
579
-
515
1159
Copperalloys(ex.Cu-0.29Si)
-
196
7090
803
-
196
1390
Carbonatesalts(ex.Li2CO3)
-
607
2200
726
-
607
1335
Nitratesalts
(ex.KNO3-0.46NaNO3)
1.5
100
1950
222
-
100
195
Bromidesalts(ex.KBr)
0.53
215
2400
730
-
215
516
Chloridesalts(ex.NaCI)
1.1
481
2170
801
-
481
1044
Fluoridesalts(ex.LiF)
2.4
1044
2200
842
-
1044
2297
Lithiumhydride
8.04
2582
790
683
-
2582
2040
Hydroxidesalts(ex.NaOH)
1.47
160
2070
320
-
160
331
Silicon
0.71
1800
2300
1414
-
1800
4140
Liquid/GasPhaseChangeMaterials
Nitrogen
1.04
199
809
(liquid)
-
-196
199
161
Oxygen
0.92
213
1140
(liquid)
-
-183
213
243
CurrentImplementation
Phasechangematerials(PCMs)havebeenencapsulatedinspherestoformpackedbedsofencapsulatedPCMs[9].Heat-transferfluidcanbepassedthroughthepacked-bedofspherestochargeordischargeenergyto/fromtheencapsulatedPCMs.Thephasechangeoccursatnearlyisothermalconditions,sothismethodisusefulforapplicationswheretheheatadditionneedstooccurataspecifictemperature.Atlargertemperatureranges,cascadedPCMsystemscanbedesigned,butwithadditionalcomplexityandcost.Todate,encapsulatedPCMsystemshavebeentestedanddemonstratedatsmallscales.Commercialsystemshavenotbeendemonstrated.
Moltensiliconsystemshavebeendevelopedtoexploitthelargeheatofphasechangewhenmelting/solidifyingsilicon(~1800kJ/kg).TheAustraliancompany,1414Degrees,hasdesignedthermalenergystoragesystemsrangingfrom10–200MWh,andtheybeganoperatingaprototypefacilityin2019.Thesystemsmeltsiliconat~1400°Candrecoupthelatentenergyduringsolidificationtopowercombinedcycles.
Ontheoppositeendofthetemperaturescale,HighviewPowerhasdemonstratedcryogenicenergystorageusing“l(fā)iquidair”atdemonstrationfacilitieswith2.5kWh(300kWpeakpower)and15MWh(5MWpeakpower)ofenergystorage.Thesystemoperatesbyusingelectricitytocoolairfromambienttemperaturesto-195°CusingtheClaudeCycle.Theliquifiedairisstoredatatmosphericpressureinlargevacuum-insulatedtanks.Thevolumeoccupiedbytheliquidairis
~1,000timeslessthanthatofairatambientconditions.Whenelectricityisneeded,theliquidairispumpedathighpressuresthroughaheatexchangerthatexposestheliquidairtoambienttemperatures(orwasteheatfromanindustrialheatsource).Theliquidairvaporizes,causingsuddenexpansion,whichspinsandturbine/generatorforelectricityproduction.Theheat
Chapter12ThermalEnergyStorage
exchangercanconsistofagravelbedthatservesasacoldstoreoflow-temperaturematerialaftergivingupitsenergytovaporizetheliquidair.Thelow-temperaturematerialcanthenbeusedtohelpcooltheairduringthenextrefrigerationcycle.
Challenges
ChallengeswithPCMsincluderelativelyhighcostsandnarrowoperatingtemperatureranges.UsingPCMstoprovideenergytoaheatenginewilltypicallyrequireacascadedsystemwithmultiplePCMswithdifferentmeltingpoints.Theuseofmoltensiliconathightemperaturesprovideschallengeswithmaterialscontainmentandheatloss.Phase-changesystemsmuststillbewellinsulatedtopreventheatlossandsubsequentphasechange.
Opportunities
1414Degreesappearstohavesuccessfullydevelopedaprototypemolten-siliconsystemthatexploitsveryhighlatentheatsoffusion.Othersystemsandmaterialsthatcanexploithighlatentheatsoffusionatlowcostsmayprovidealternativethermalstoragecapabilities.
Thermochemicalstorage
Thermochemicalenergystorage(TCES)isapromisingstoragetechnology,especiallyathightemperatures(>700°C),asitallowsforthestorageofheatthroughchemicalreactions,forexample,thebreaking/reformingofbonds.AconceptualillustrationofTCESisshownin
Figure
7
.
Figure7.SchematicofstepsinvolvedinTCES:charging,storage,anddischarging[18]
Thethermochemicalstoragereaction,initsmostbasicform,canbewrittenas
AB+ΔHrxn?A+B (2)
Inthisequation,ReactantABisdissociatedintoProductsA+Bviatheapplicationofheat(heatofreactionshownin
Table3
)inanendothermicreaction.Theindividualproductscanbestoredseparatelyforanindefiniteamountoftime.Intimesofthermaldemand,A+Brecombineinanexothermicreaction,releasingheat(thereactionproceedstotheleft).
Chapter12ThermalEnergyStorage
TheTCESprocesscomparedtootherthermalstoragetechnologiesissummarizedin
Table1
.ThepotentialbenefitsofTCESinclude(1)enablingmoreefficienthigh-temperaturepowercycles(sCO2orairBrayton)thatareinaccessibleusingcurrentmoltensalttechnologies,(2)potentialhigher-densityandlong-termstorage,and(3)higherexergy.Inaddition,certainTCESprocesses(e.g.,redox-activeoxides)arealsoamenabletogeneratinghydrogenviawater-splitting.Thehydrogencanthenbeusedon-sitetorunafuelcellforback-upgeneration.ForTCEStobeapracticalstoragetechnology,thematerialsmusthavealargereactionenthalpyandfastreactionkinetics,highthermalconductivity,goodcyclicstabilitywithouttheformationofunwantedphasesorsidereactions.Theyshouldalsoconsistofabundantandeconomicallyinexpensiveelements[19-22].
Implementation
AvarietyofpotentialTCESprocessesexist,thoughnoTCESmaterialhasbeenimplementedonanindustrialscale.TCEScanbeapplicableoverawiderangeoftemperaturesandconditions.Heatsource,thetypeofpowercycle,operatingtemperature,andreceiverconfigurationallinfluencetheselectionofacandidateTCESmaterial.
Table4
liststhemostpromisingTCESreactionsbytype,reactiontemperatures,enthalpies,andgravimetricstorageenergies.Theoperatingtemperaturesandstoragedensitiesarerepresentativevalues,butcandifferdependingonoperatingconditions,suchaspressure,aswellasthemorphologyofthesolidspecies.Thesolidspeciescanbeparticles,monoliths,orsupportedoninertorreactivescaffoldstoavoidsinteringordeactivationofthematerial[23].
Table4.Candidatematerialssystemsforthermochemicalenergystorage
StorageMedium
ReactionEnthalpy(kJ/mol)
TemperatureRange(°C)
GravimetricStorageDensity(kJ/kg)
VolumetricStorageDensity(MJ/m3)
Carbonates
CaCO3(s)+ΔH?CO2(g)+CaO(s)+CO2(g)
178
850-1273
1764
2491
SrCO3(s)+ΔH?SrO(s)+CO2(g)
234
900-1200
300-1000
1200-1500
BaCO3(s)+ΔH?BaO(s)+CO2(g)
273
~1290
Hydroxides
Ca(OH)2(s)+ΔH?CaO(s)+H2O(g)
104
400600
1406
1640
Mg(OH)2(s)+ΔH?MgO(s)+H2O(g)
81
350-
1340
1396
Hydrides
MgH2(s)+ΔH?Mg(s)+H2(g)
75
300-480
2880
2088
Mg2FeH6(s)+ΔH?2Mg(s)+Fe(s)+H2(g)
74
300-500
2106(theo.),
1921(expt)
5768(theo)2344(expt)
Mg2NiH4(s)+ΔH?Mg2Ni(s)+2H2(g)
77
300-500
1160
3142
NaMg2H3(s)+ΔH?NaH(s)+Mg(s)+H2(g)
87
430-585
1721
~1721
NaMgH2F(s)+ΔH?NaF(s)+Mg(s)+H2(g)
97
510-605
1416
1968
CaH2(s)+ΔH?Ca(s)+H2(g)
186
1000-1400
3587
7374
Chapter12ThermalEnergyStorage
StorageMedium
ReactionEnthalpy(kJ/mol)
TemperatureRange(°C)
GravimetricStorageDensity(kJ/kg)
VolumetricStorageDensity(MJ/m3)
Ammonia
NH3(g)??N2(g)+3/2H2(g)
67
400-700
3924
2682
RedoxActiveOxides*
-
2Co3O4(s)+ΔH?6CoO(s)+O2(g)
205
900
844
-
2BaO2(s)+ΔH?6BaO(s)+O2(g)
79
693-780
474
-
6Mn2O3(s)+ΔH?4Mn3O4(s)+O2(g)
32
1000
204
-
4CuO(s)+ΔH?2Cu2O(s)+O2(g)
64
1030
-
-
Ca0.95Sr0.05MnO3(s)+ΔH?Ca0.95Sr0.05MnO2.7(s)+
0.15O2(g)
-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)不銹鋼焊管市場(chǎng)發(fā)展動(dòng)態(tài)及前景趨勢(shì)研究報(bào)告
- 2025年中國(guó)數(shù)顯式工程陶瓷抗壓強(qiáng)度測(cè)試儀數(shù)據(jù)監(jiān)測(cè)報(bào)告
- 2025年中國(guó)隧道式電阻爐市場(chǎng)調(diào)查研究報(bào)告
- 肇慶市實(shí)驗(yàn)中學(xué)高中生物一:從生物圈到細(xì)胞習(xí)題課
- 2025至2031年中國(guó)素色飯碟行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 2025至2031年中國(guó)紙包裝制品行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 新疆理工學(xué)院《工程生態(tài)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025至2031年中國(guó)移門(mén)輪行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 新疆政法學(xué)院《德語(yǔ)文學(xué)名著導(dǎo)讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025至2031年中國(guó)等孔隙冷卻塔立體填料行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 新版《醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范》(2024)培訓(xùn)試題及答案
- 大數(shù)據(jù)與人工智能營(yíng)銷(xiāo)(南昌大學(xué))知到智慧樹(shù)章節(jié)答案
- 健合集團(tuán)筆試在線(xiàn)測(cè)評(píng)題
- 2024屆江蘇省蘇錫常鎮(zhèn)四市高三二模地理試題含答案解析
- 99S203 消防水泵接合器安裝圖集
- 行列式概念和性質(zhì)
- (新版)農(nóng)網(wǎng)配電營(yíng)業(yè)工(綜合柜員)資格考試題庫(kù)(含答案)
- (完整版)市政道路綜合管廊施工方案
- 生產(chǎn)要素國(guó)際流動(dòng)概論
- 叉車(chē)日常使用狀況點(diǎn)檢記錄表(日常檢查記錄)
- 數(shù)學(xué)物理方法第四版(梁昆淼)期末總結(jié)
評(píng)論
0/150
提交評(píng)論