![2023-2024學(xué)年福建省莆田二十四中學(xué)中考五模數(shù)學(xué)試題含解析_第1頁(yè)](http://file4.renrendoc.com/view4/M01/06/2B/wKhkGGYpk_aALKA_AAIoI2tgCzM234.jpg)
![2023-2024學(xué)年福建省莆田二十四中學(xué)中考五模數(shù)學(xué)試題含解析_第2頁(yè)](http://file4.renrendoc.com/view4/M01/06/2B/wKhkGGYpk_aALKA_AAIoI2tgCzM2342.jpg)
![2023-2024學(xué)年福建省莆田二十四中學(xué)中考五模數(shù)學(xué)試題含解析_第3頁(yè)](http://file4.renrendoc.com/view4/M01/06/2B/wKhkGGYpk_aALKA_AAIoI2tgCzM2343.jpg)
![2023-2024學(xué)年福建省莆田二十四中學(xué)中考五模數(shù)學(xué)試題含解析_第4頁(yè)](http://file4.renrendoc.com/view4/M01/06/2B/wKhkGGYpk_aALKA_AAIoI2tgCzM2344.jpg)
![2023-2024學(xué)年福建省莆田二十四中學(xué)中考五模數(shù)學(xué)試題含解析_第5頁(yè)](http://file4.renrendoc.com/view4/M01/06/2B/wKhkGGYpk_aALKA_AAIoI2tgCzM2345.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年福建省莆田二十四中學(xué)中考五模數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)C為弧BD的中點(diǎn),若∠DAB=50°,則∠ABC的大小是()A.55° B.60° C.65° D.70°2.“綠水青山就是金山銀山”.某工程隊(duì)承接了60萬(wàn)平方米的荒山綠化任務(wù),為了迎接雨季的到來(lái),實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了25%,結(jié)果提前30天完成了這一任務(wù).設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬(wàn)平方米,則下面所列方程中正確的是()A. B.C. D.3.如圖,一個(gè)斜坡長(zhǎng)130m,坡頂離水平地面的距離為50m,那么這個(gè)斜坡的坡度為(
)A. B. C. D.4.某品牌的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序:開機(jī)加熱到水溫100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時(shí)間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘5.某城年底已有綠化面積公頃,經(jīng)過(guò)兩年綠化,到年底增加到公頃,設(shè)綠化面積平均每年的增長(zhǎng)率為,由題意所列方程正確的是().A. B. C. D.6.下列汽車標(biāo)志中,不是軸對(duì)稱圖形的是()A. B. C. D.7.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長(zhǎng)線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長(zhǎng)為()A.8 B.10 C.13 D.148.已知,如圖,AB是⊙O的直徑,點(diǎn)D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°9.如圖,已知反比函數(shù)的圖象過(guò)Rt△ABO斜邊OB的中點(diǎn)D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長(zhǎng)為,AD=2,則△ACO的面積為()A. B.1 C.2 D.410.已知二次函數(shù)y=x2﹣4x+m的圖象與x軸交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,0),則線段AB的長(zhǎng)為()A.1 B.2 C.3 D.411.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④12.下列式子成立的有()個(gè)①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根A.1 B.2 C.3 D.4二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.(1)計(jì)算△ABC的周長(zhǎng)等于_____.(2)點(diǎn)P、點(diǎn)Q(不與△ABC的頂點(diǎn)重合)分別為邊AB、BC上的動(dòng)點(diǎn),4PB=5QC,連接AQ、PC.當(dāng)AQ⊥PC時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出線段AQ、PC,并簡(jiǎn)要說(shuō)明點(diǎn)P、Q的位置是如何找到的(不要求證明).___________________________.14.為了了解貫徹執(zhí)行國(guó)家提倡的“陽(yáng)光體育運(yùn)動(dòng)”的實(shí)施情況,將某班50名同學(xué)一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的數(shù)據(jù),該班50名同學(xué)一周參加體育鍛煉時(shí)間的中位數(shù)與眾數(shù)之和為_____.15.如圖,⊙O的直徑CD垂直于AB,∠AOC=48°,則∠BDC=度.16.如圖,AB為⊙O的弦,C為弦AB上一點(diǎn),設(shè)AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過(guò)的面積為(m2﹣n2)π,則=______17.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點(diǎn),E是邊AC上一點(diǎn),∠ADE=∠C,∠BAC的平分線分別交DE、BC于點(diǎn)F、G,那么的值為__________.18.4是_____的算術(shù)平方根.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)有A,B兩個(gè)黑布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和1.B布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣1和﹣2.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再?gòu)腂布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)Q的一個(gè)坐標(biāo)為(x,y).(1)用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);(1)求點(diǎn)Q落在直線y=﹣x﹣1上的概率.20.(6分)為了解中學(xué)生“平均每天體育鍛煉時(shí)間”的情況,某地區(qū)教育部門隨機(jī)調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:本次接受隨機(jī)抽樣調(diào)查的中學(xué)生人數(shù)為_______,圖①中m的值是_____;求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);根據(jù)統(tǒng)計(jì)數(shù)據(jù),估計(jì)該地區(qū)250000名中學(xué)生中,每天在校體育鍛煉時(shí)間大于等于1.5h的人數(shù).21.(6分)已知二次函數(shù)的圖象如圖6所示,它與軸的一個(gè)交點(diǎn)坐標(biāo)為,與軸的交點(diǎn)坐標(biāo)為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時(shí),自變量的取值范圍.22.(8分)先化簡(jiǎn)再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.23.(8分)已知正方形ABCD的邊長(zhǎng)為2,作正方形AEFG(A,E,F(xiàn),G四個(gè)頂點(diǎn)按逆時(shí)針?lè)较蚺帕校B接BE、GD,(1)如圖①,當(dāng)點(diǎn)E在正方形ABCD外時(shí),線段BE與線段DG有何關(guān)系?直接寫出結(jié)論;(2)如圖②,當(dāng)點(diǎn)E在線段BD的延長(zhǎng)線上,射線BA與線段DG交于點(diǎn)M,且DG=2DM時(shí),求邊AG的長(zhǎng);(3)如圖③,當(dāng)點(diǎn)E在正方形ABCD的邊CD所在的直線上,直線AB與直線DG交于點(diǎn)M,且DG=4DM時(shí),直接寫出邊AG的長(zhǎng).24.(10分)某區(qū)域平面示意圖如圖,點(diǎn)O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測(cè)員在A處測(cè)得點(diǎn)O位于北偏東45°,乙勘測(cè)員在B處測(cè)得點(diǎn)O位于南偏西73.7°,測(cè)得AC=840m,BC=500m.請(qǐng)求出點(diǎn)O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈25.(10分)先化簡(jiǎn),再求值:,其中a是方程a(a+1)=0的解.26.(12分)西安匯聚了很多人們耳熟能詳?shù)年兾髅朗常钊A和王濤同時(shí)去選美食,李華準(zhǔn)備在“肉夾饃(A)、羊肉泡饃(B)、麻醬涼皮(C)、(biang)面(D)”這四種美食中選擇一種,王濤準(zhǔn)備在“秘制涼皮(E)、肉丸胡辣湯(F)、葫蘆雞(G)、水晶涼皮(H)”這四種美食中選擇一種.(1)求李華選擇的美食是羊肉泡饃的概率;(2)請(qǐng)用畫樹狀圖或列表的方法,求李華和王濤選擇的美食都是涼皮的概率.27.(12分)每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購(gòu),經(jīng)調(diào)查:購(gòu)買了3臺(tái)甲型設(shè)備比購(gòu)買2臺(tái)乙型設(shè)備多花了16萬(wàn)元,購(gòu)買2臺(tái)甲型設(shè)備比購(gòu)買3臺(tái)乙型設(shè)備少花6萬(wàn)元.求甲、乙兩種型號(hào)設(shè)備的價(jià)格;該公司經(jīng)預(yù)算決定購(gòu)買節(jié)省能源的新設(shè)備的資金不超過(guò)110萬(wàn)元,你認(rèn)為該公司有幾種購(gòu)買方案;在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購(gòu)買方案.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】連接OC,因?yàn)辄c(diǎn)C為弧BD的中點(diǎn),所以∠BOC=∠DAB=50°,因?yàn)镺C=OB,所以∠ABC=∠OCB=65°,故選C.2、C【解析】分析:設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬(wàn)平方米,根據(jù)工作時(shí)間=工作總量÷工作效率結(jié)合提前30天完成任務(wù),即可得出關(guān)于x的分式方程.詳解:設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬(wàn)平方米,則原來(lái)每天綠化的面積為萬(wàn)平方米,依題意得:,即.故選C.點(diǎn)睛:考查了由實(shí)際問(wèn)題抽象出分式方程.找到關(guān)鍵描述語(yǔ),找到合適的等量關(guān)系是解決問(wèn)題的關(guān)鍵.3、A【解析】試題解析:∵一個(gè)斜坡長(zhǎng)130m,坡頂離水平地面的距離為50m,∴這個(gè)斜坡的水平距離為:=10m,∴這個(gè)斜坡的坡度為:50:10=5:1.故選A.點(diǎn)睛:本題考查解直角三角形的應(yīng)用-坡度坡角問(wèn)題,解題的關(guān)鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個(gè)比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.4、C【解析】
先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設(shè)反比例函數(shù)關(guān)系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時(shí)間是:20-7=13,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用,利用數(shù)形結(jié)合思想解題是關(guān)鍵.5、B【解析】
先用含有x的式子表示2015年的綠化面積,進(jìn)而用含有x的式子表示2016年的綠化面積,根據(jù)等式關(guān)系列方程即可.【詳解】由題意得,綠化面積平均每年的增長(zhǎng)率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過(guò)兩年的增長(zhǎng),綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用,找準(zhǔn)其中的等式關(guān)系式解答此題的關(guān)鍵.6、C【解析】
根據(jù)軸對(duì)稱圖形的概念求解.【詳解】A、是軸對(duì)稱圖形,故錯(cuò)誤;B、是軸對(duì)稱圖形,故錯(cuò)誤;C、不是軸對(duì)稱圖形,故正確;D、是軸對(duì)稱圖形,故錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了軸對(duì)稱圖形的概念:軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分沿對(duì)稱軸折疊后可重合.7、C【解析】
根據(jù)三角形的面積公式以及切線長(zhǎng)定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長(zhǎng)定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長(zhǎng)定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長(zhǎng)定理可知:CE=CF,BE=BG,∴△ABC的周長(zhǎng)為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點(diǎn)睛】本題考查切線長(zhǎng)定理,解題的關(guān)鍵是畫出輔助線,熟練運(yùn)用切線長(zhǎng)定理,本題屬于中等題型.8、B【解析】因?yàn)锳B是⊙O的直徑,所以求得∠ADB=90°,進(jìn)而求得∠B的度數(shù),又因?yàn)椤螧=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所對(duì)的圓周角相等).
故選B.
9、A【解析】
在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長(zhǎng),根據(jù)周長(zhǎng)求出直角邊之和,設(shè)其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長(zhǎng),過(guò)D作DE垂直于x軸,得到E為OA中點(diǎn),求出OE的長(zhǎng),在直角三角形DOE中,利用勾股定理求出DE的長(zhǎng),利用反比例函數(shù)k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長(zhǎng)為4+2,得到AB+AO=2,設(shè)AB=x,則AO=2-x,根據(jù)勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過(guò)D作DE⊥x軸,交x軸于點(diǎn)E,可得E為AO中點(diǎn),∴OE=OA=(-)(假設(shè)OA=+,與OA=-,求出結(jié)果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點(diǎn)睛】本題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:勾股定理,直角三角形斜邊的中線性質(zhì),三角形面積求法,以及反比例函數(shù)k的幾何意義,熟練掌握反比例的圖象與性質(zhì)是解本題關(guān)鍵.10、B【解析】
先將點(diǎn)A(1,0)代入y=x2﹣4x+m,求出m的值,將點(diǎn)A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【詳解】將點(diǎn)A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點(diǎn),設(shè)A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個(gè)不等的實(shí)數(shù)根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【點(diǎn)睛】此題考查拋物線與坐標(biāo)軸的交點(diǎn),解題關(guān)鍵在于將已知點(diǎn)代入.11、B【解析】
由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過(guò)點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯(cuò)誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點(diǎn)睛】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時(shí)根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長(zhǎng)度是關(guān)鍵.12、B【解析】
根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式進(jìn)行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯(cuò)誤;③(-)=﹣2,故錯(cuò)誤;④因?yàn)椤鳎?﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個(gè)不等的實(shí)數(shù)根,故正確.故選B.【點(diǎn)睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運(yùn)算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計(jì)算法則即可解答.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、12連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【解析】
(1)利用勾股定理求出AB,從而得到△ABC的周長(zhǎng);(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AP,CQ即為所求.【詳解】解:(1)∵AC=3,BC=4,∠C=90o,∴根據(jù)勾股定理得AB=5,∴△ABC的周長(zhǎng)=5+4+3=12.(2)取格點(diǎn)D,E,F(xiàn),G,H,連接DE與BC交于點(diǎn)Q;連接DF與BC交于點(diǎn)M;連接GH與格線交于點(diǎn)N;連接MN與AB交于點(diǎn)P;連接AQ,CP即為所求。故答案為:(1)12;(2)連接DE與BC與交于點(diǎn)Q,連接DF與BC交于點(diǎn)M,連接GH與格線交于點(diǎn)N,連接MN與AB交于P.【點(diǎn)睛】本題涉及的知識(shí)點(diǎn)有:勾股定理,三角形中位線定理,軸對(duì)稱之線路最短問(wèn)題.14、17【解析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個(gè)數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時(shí).15、20【解析】解:連接OB,∵⊙O的直徑CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°16、【解析】
先確定線段BC過(guò)的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結(jié)論.【詳解】如圖,連接OB、OC,以O(shè)為圓心,OC為半徑畫圓,則將弦AB繞圓心O旋轉(zhuǎn)一周,線段BC掃過(guò)的面積為圓環(huán)的面積,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,過(guò)O作OD⊥AB于D,∴BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=,∵m>0,n>0,∴m=,∴,故答案為.【點(diǎn)睛】此題主要考查了勾股定理,垂徑定理,一元二次方程等知識(shí),根據(jù)旋轉(zhuǎn)的性質(zhì)確定線段BC掃過(guò)的面積是解題的關(guān)鍵,是一道中等難度的題目.17、【解析】
由題中所給條件證明△ADF△ACG,可求出的值.【詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點(diǎn)AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),難度適中,需熟練掌握.18、16.【解析】試題解析:∵42=16,∴4是16的算術(shù)平方根.考點(diǎn):算術(shù)平方根.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)見(jiàn)解析;(1)【解析】試題分析:先用列表法寫出點(diǎn)Q的所有可能坐標(biāo),再根據(jù)概率公式求解即可.(1)由題意得
1
1
-1
(1,-1)
(1,-1)
-1
(1,-1)
(1,-1)
-2
(1,-2)
(1,-2)
(1)共有6種等可能情況,符合條件的有1種P(點(diǎn)Q在直線y=?x?1上)=.考點(diǎn):概率公式點(diǎn)評(píng):解題的關(guān)鍵是熟練掌握概率公式:概率=所求情況數(shù)與總情況數(shù)的比值.20、(1)250、12;(2)平均數(shù):1.38h;眾數(shù):1.5h;中位數(shù):1.5h;(3)160000人;【解析】
(1)根據(jù)題意,本次接受調(diào)查的學(xué)生總?cè)藬?shù)為各個(gè)金額人數(shù)之和,用總概率減去其他金額的概率即可求得m值.(2)平均數(shù)為一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以這組數(shù)據(jù)的個(gè)數(shù);眾數(shù)是在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù),或是最中間兩個(gè)數(shù)據(jù)的平均數(shù),據(jù)此求解即可.(3)根據(jù)樣本估計(jì)總體,用“每天在校體育鍛煉時(shí)間大于等于1.5h的人數(shù)”的概率乘以全???cè)藬?shù)求解即可.【詳解】(1)本次接受隨機(jī)抽樣調(diào)查的中學(xué)生人數(shù)為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數(shù)為=1.38(h),眾數(shù)為1.5h,中位數(shù)為=1.5h;(3)估計(jì)每天在校體育鍛煉時(shí)間大于等于1.5h的人數(shù)約為250000×=160000人.【點(diǎn)睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計(jì)圖表.21、(1);(2).【解析】
(1)將(-1,0)和(0,3)兩點(diǎn)代入二次函數(shù)y=-x2+bx+c,求得b和c;從而得出拋物線的解析式;
(2)令y=0,解得x1,x2,得出此二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo),進(jìn)而求出當(dāng)函數(shù)值y>0時(shí),自變量x的取值范圍.【詳解】解:(1)由二次函數(shù)的圖象經(jīng)過(guò)和兩點(diǎn),得,解這個(gè)方程組,得,拋物線的解析式為,(2)令,得.解這個(gè)方程,得,.∴此二次函數(shù)的圖象與軸的另一個(gè)交點(diǎn)的坐標(biāo)為.當(dāng)時(shí),.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標(biāo)軸的交點(diǎn),解題的關(guān)鍵是熟練的掌握二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標(biāo)軸的交點(diǎn).22、;【解析】
先根據(jù)分式的混合運(yùn)算順序和運(yùn)算法則化簡(jiǎn)原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計(jì)算可得.【詳解】原式=÷(﹣)===,當(dāng)a=2cos30°+1=2×+1=+1,b=tan45°=1時(shí),原式=.【點(diǎn)睛】本題主要考查分式的化簡(jiǎn)求值,在化簡(jiǎn)的過(guò)程中要注意運(yùn)算順序和分式的化簡(jiǎn).化簡(jiǎn)的最后結(jié)果分子、分母要進(jìn)行約分,注意運(yùn)算的結(jié)果要化成最簡(jiǎn)分式或整式,也考查了特殊銳角的三角函數(shù)值.23、(1)結(jié)論:BE=DG,BE⊥DG.理由見(jiàn)解析;(1)AG=1;(3)滿足條件的AG的長(zhǎng)為1或1.【解析】
(1)結(jié)論:BE=DG,BE⊥DG.只要證明△BAE≌△DAG(SAS),即可解決問(wèn)題;(1)如圖②中,連接EG,作GH⊥AD交DA的延長(zhǎng)線于H.由A,D,E,G四點(diǎn)共圓,推出∠ADO=∠AEG=45°,解直角三角形即可解決問(wèn)題;(3)分兩種情形分別畫出圖形即可解決問(wèn)題;【詳解】(1)結(jié)論:BE=DG,BE⊥DG.理由:如圖①中,設(shè)BE交DG于點(diǎn)K,AE交DG于點(diǎn)O.∵四邊形ABCD,四邊形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∴∠AEB=∠AGD,∵∠AOG=∠EOK,∴∠OAG=∠OKE=90°,∴BE⊥DG.(1)如圖②中,連接EG,作GH⊥AD交DA的延長(zhǎng)線于H.∵∠OAG=∠ODE=90°,∴A,D,E,G四點(diǎn)共圓,∴∠ADO=∠AEG=45°,∵∠DAM=90°,∴∠ADM=∠AMD=45°,∴∵DG=1DM,∴∵∠H=90°,∴∠HDG=∠HGD=45°,∴GH=DH=4,∴AH=1,在Rt△AHG中,(3)①如圖③中,當(dāng)點(diǎn)E在CD的延長(zhǎng)線上時(shí).作GH⊥DA交DA的延長(zhǎng)線于H.易證△AHG≌△EDA,可得GH=AB=1,∵DG=4DM.AM∥GH,∴∴DH=8,∴AH=DH﹣AD=6,在Rt△AHG中,②如圖3﹣1中,當(dāng)點(diǎn)E在DC的延長(zhǎng)線上時(shí),易證:△AKE≌△GHA,可得AH=EK=BC=1.∵AD∥GH,∴∵AD=1,∴HG=10,在Rt△AGH中,綜上所述,滿足條件的AG的長(zhǎng)為或.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),平行線分線段成比例定理,等腰直角三角形的性質(zhì)和判定,勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,屬于中考?jí)狠S題.24、點(diǎn)O到BC的距離為480m.【解析】
作OM⊥BC于M,ON⊥AC于N,設(shè)OM=x,根據(jù)矩形的性質(zhì)用x表示出OM、MC,根據(jù)正切的定義用x表示出BM,根據(jù)題意列式計(jì)算即可.【詳解】作OM⊥BC于M,ON⊥AC于N,則四邊形ONCM為矩形,∴ON=MC,OM=NC,設(shè)OM=x,則NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025委托招標(biāo)代理合同
- 2025【合同范本】建筑工程施工合同示本
- 2025二手空調(diào)購(gòu)銷合同范本
- 促銷活動(dòng)合同范例
- 2024年六年級(jí)品社下冊(cè)《去中學(xué)看看》說(shuō)課稿2 蘇教版
- 配件報(bào)價(jià)實(shí)施方案
- 2024年五年級(jí)英語(yǔ)下冊(cè) Unit 4 Did You Have a Nice Trip Lesson 19 Li Ming Goes Home說(shuō)課稿 冀教版(三起)
- 貴州籠式球場(chǎng)護(hù)欄施工方案
- 砂石加工賬目處理方案
- 城市道路智慧路燈項(xiàng)目 投標(biāo)方案(技術(shù)標(biāo))
- 水泥采購(gòu)?fù)稑?biāo)方案(技術(shù)標(biāo))
- 醫(yī)院招標(biāo)采購(gòu)管理辦法及實(shí)施細(xì)則(試行)
- 初中英語(yǔ)-Unit2 My dream job(writing)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- 廣州市勞動(dòng)仲裁申請(qǐng)書
- 江西省上饒市高三一模理綜化學(xué)試題附參考答案
- 23-張方紅-IVF的治療流程及護(hù)理
- 頂部板式吊耳計(jì)算HGT-20574-2018
- 因數(shù)和倍數(shù)復(fù)習(xí)思維導(dǎo)圖
- LY/T 2986-2018流動(dòng)沙地沙障設(shè)置技術(shù)規(guī)程
- 三級(jí)教育考試卷(電工)答案
評(píng)論
0/150
提交評(píng)論