版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市九臺市師范中2023-2024學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知菱形的邊長為2,,則()A.4 B.6 C. D.2.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.3.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費(fèi)用超過15萬元將該設(shè)備報廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年4.設(shè)直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.5.復(fù)數(shù),是虛數(shù)單位,則下列結(jié)論正確的是A. B.的共軛復(fù)數(shù)為C.的實部與虛部之和為1 D.在復(fù)平面內(nèi)的對應(yīng)點位于第一象限6.已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標(biāo)分別為,則()A. B. C. D.7.框圖與程序是解決數(shù)學(xué)問題的重要手段,實際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數(shù)據(jù)的方差,設(shè)計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,8.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時,,則,,的大小關(guān)系為()A. B. C. D.9.在的展開式中,含的項的系數(shù)是()A.74 B.121 C. D.10.已知集合,,則=()A. B. C. D.11.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.12.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知△ABC得三邊長成公比為2的等比數(shù)列,則其最大角的余弦值為_____.14.已知,如果函數(shù)有三個零點,則實數(shù)的取值范圍是____________15.已知拋物線的焦點為,斜率為的直線過且與拋物線交于兩點,為坐標(biāo)原點,若在第一象限,那么_______________.16.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學(xué)生的人數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計年的銷售量.18.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.19.(12分)在直角坐標(biāo)系中,直線l過點,且傾斜角為,以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.求直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程,并判斷曲線C是什么曲線;設(shè)直線l與曲線C相交與M,N兩點,當(dāng),求的值.20.(12分)已知函數(shù),.(1)當(dāng)時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當(dāng)時,若對時,,且有唯一零點,證明:.21.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.22.(10分)已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當(dāng)直線經(jīng)過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標(biāo)為(1)求橢圓的方程;(2)點為內(nèi)一點,為坐標(biāo)原點,滿足,若點恰好在圓上,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【點睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問題,屬于基礎(chǔ)題..2、C【解析】
由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計算并輸出變量的值,計算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡單題.3、D【解析】
根據(jù)樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費(fèi)用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.4、A【解析】
圓的圓心坐標(biāo)為(1,1),該圓心到直線的距離,結(jié)合弦長公式得,解得或,故選A.5、D【解析】
利用復(fù)數(shù)的四則運(yùn)算,求得,在根據(jù)復(fù)數(shù)的模,復(fù)數(shù)與共軛復(fù)數(shù)的概念等即可得到結(jié)論.【詳解】由題意,則,的共軛復(fù)數(shù)為,復(fù)數(shù)的實部與虛部之和為,在復(fù)平面內(nèi)對應(yīng)點位于第一象限,故選D.【點睛】復(fù)數(shù)代數(shù)形式的加減乘除運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項式的合并同類項,乘法法則類似于多項式乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實數(shù)化,其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)的實部為、虛部為、模為、對應(yīng)點為、共軛為.6、A【解析】
畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關(guān)于對稱,故選:A【點睛】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據(jù)題意為了計算7個數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.8、C【解析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項.【詳解】依題意得,,當(dāng)時,,因為,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.9、D【解析】
根據(jù),利用通項公式得到含的項為:,進(jìn)而得到其系數(shù),【詳解】因為在,所以含的項為:,所以含的項的系數(shù)是的系數(shù)是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題,10、C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運(yùn)算,意在考查學(xué)生的計算能力.11、A【解析】
設(shè)的中點為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點為O,因為,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因為,所以,解得.因為,所以.設(shè),易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題12、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。二、填空題:本題共4小題,每小題5分,共20分。13、-【解析】試題分析:根據(jù)題意設(shè)三角形的三邊長分別設(shè)為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設(shè)為θ,則根據(jù)余弦定理得考點:余弦定理及等比數(shù)列的定義.14、【解析】
首先把零點問題轉(zhuǎn)化為方程問題,等價于有三個零點,兩側(cè)開方,可得,即有三個零點,再運(yùn)用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當(dāng)時,,當(dāng)時,,此時函數(shù)若有兩個零點,則有,綜上可知,若函數(shù)有三個零點,則實數(shù)的取值范圍是.故答案為:【點睛】本題考查了函數(shù)零點的零點,恰當(dāng)?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點問題,注意恰有三個零點條件的應(yīng)用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.15、2【解析】
如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因為.所以,過點A、B分別作準(zhǔn)線的垂線,垂足分別為M,N,過點B作于點E,設(shè)|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因為,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2【點睛】本題主要考查直線和拋物線的位置關(guān)系,考查拋物線的定義,意在考查學(xué)生對這些知識的理解掌握水平.16、1【解析】
直接根據(jù)分層抽樣的比例關(guān)系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學(xué)生的人數(shù)為6001.故答案為:1.【點睛】本題考查了分層抽樣的計算,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),中位數(shù)為;(2)新能源汽車平均每個季度的銷售量為萬臺,以此預(yù)計年的銷售量約為萬臺.【解析】
(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個矩形底邊的中點值乘以相應(yīng)矩形的面積,相加可得出銷量的平均數(shù),由此可預(yù)計年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個季度的銷售量為(萬臺),由此預(yù)測年的銷售量為萬臺.【點睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計算,考查計算能力,屬于基礎(chǔ)題.18、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點,點到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點,則點到曲線的圓心的距離.∵,∴當(dāng)時,d有最大值.又∵P,Q分別為曲線,曲線上動點,∴的最大值為.19、(Ⅰ)曲線是焦點在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線的參數(shù)方程為,(為參數(shù)),;曲線的直角坐標(biāo)方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數(shù)方程為.曲線的直角坐標(biāo)方程為,即,所以曲線是焦點在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線的直角坐標(biāo)方程為得,,得,,20、(1)①見解析,②見解析;(2)見解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;②令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時,;當(dāng)時,;當(dāng)時,.(2)由題意,,在上有唯一零點.利用導(dǎo)數(shù)可得當(dāng)時,在上單調(diào)遞減,當(dāng),時,在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當(dāng)時,,,,又,切線方程為,即;②令,則,在上單調(diào)遞減.又,當(dāng)時,,即;當(dāng)時,,即;當(dāng)時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當(dāng)時,,在上單調(diào)遞減,當(dāng),時,,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.【點睛】本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.21、(1)(2)(i)(ii)分布列見解析,【解析】
(1)先計算甲、乙、丙同學(xué)分別選擇D高校的概率,利用事件的獨(dú)立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨(dú)立性即得解;(ii),利用事件的獨(dú)立性,分別計算對應(yīng)的概率,列出分布列,計算數(shù)學(xué)期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學(xué)都
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版鋁合金復(fù)合材料研發(fā)與應(yīng)用合同12篇
- 2025版企業(yè)設(shè)備更新改造貸款合同樣本3篇
- 二零二五年度市政綠化帶維護(hù)承包合同4篇
- 二零二五年度太空探索聘用員工合同
- 2025版土石方居間服務(wù)與施工質(zhì)量協(xié)議3篇
- 2025年茅勤離婚協(xié)議書婚姻債務(wù)清償標(biāo)準(zhǔn)范本
- 2025年度私人車輛轉(zhuǎn)讓與年度租賃服務(wù)及維修合同
- 2025年度個人藝術(shù)品拍賣居間服務(wù)協(xié)議4篇
- 二手貨車買賣雙方權(quán)責(zé)明確不過戶協(xié)議版B版
- 二零二五年度印刷材料環(huán)保認(rèn)證合同3篇
- 臺兒莊介紹課件
- 疥瘡病人的護(hù)理
- 人工智能算法與實踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個崗位安全操作規(guī)程手冊
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運(yùn)維、重保服務(wù))
- 2024年鄉(xiāng)村振興(產(chǎn)業(yè)、文化、生態(tài))等實施戰(zhàn)略知識考試題庫與答案
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 軟件模塊化設(shè)計與開發(fā)標(biāo)準(zhǔn)與規(guī)范
- 2024年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
評論
0/150
提交評論