版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省常德市武陵區(qū)第一中學2023-2024學年高三第二次聯考數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數若關于的方程有六個不相等的實數根,則實數的取值范圍為()A. B. C. D.2.函數的圖像大致為().A. B.C. D.3.函數在上的大致圖象是()A. B.C. D.4.設復數滿足,在復平面內對應的點為,則()A. B. C. D.5.已知,復數,,且為實數,則()A. B. C.3 D.-36.曲線在點處的切線方程為,則()A. B. C.4 D.87.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內部的一些虛線構成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關8.已知是虛數單位,若,則()A. B.2 C. D.39.德國數學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數學家?天文學家明安圖(1692年-1765年)為提高我國的數學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內的三個公式,同時求得了展開三角函數和反三角函數的6個新級數公式,著有《割圓密率捷法》一書,為我國用級數計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結果是()A. B.C. D.10.已知數列是公差為的等差數列,且成等比數列,則()A.4 B.3 C.2 D.111.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎的一種計算方法,將所求解的問題同一定的概率模型相聯系;用均勻投點實現統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現向一邊長為的正方形模型內均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.12.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.實數滿足,則的最大值為_____.14.中,角的對邊分別為,且成等差數列,若,,則的面積為__________.15.如圖,機器人亮亮沿著單位網格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.16.在棱長為6的正方體中,是的中點,點是面,所在平面內的動點,且滿足,則三棱錐的體積的最大值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)中,內角的對邊分別為,.(1)求的大?。唬?)若,且為的重心,且,求的面積.19.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若,求邊上的高.20.(12分)如圖,設A是由個實數組成的n行n列的數表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數,且aij{1,-1}.記S(n,n)為所有這樣的數表構成的集合.對于,記ri(A)為A的第i行各數之積,cj(A)為A的第j列各數之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數n,對于所有的AS(n,n),求l(A)的取值集合.21.(12分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.22.(10分)等差數列中,.(1)求的通項公式;(2)設,記為數列前項的和,若,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關于的方程有六個不相等的實數根,則有兩個不同的根,設由根的分布可知,,解得.故選:B.【點睛】本題考查復合方程根的個數問題,涉及到一元二次方程根的分布,考查學生轉化與化歸和數形結合的思想,是一道中檔題.2、A【解析】
本題采用排除法:由排除選項D;根據特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數,則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數解析式較復雜的圖象的判斷;利用函數奇偶性、特殊值符號的正負等有關性質進行逐一排除是解題的關鍵;屬于中檔題.3、D【解析】
討論的取值范圍,然后對函數進行求導,利用導數的幾何意義即可判斷.【詳解】當時,,則,所以函數在上單調遞增,令,則,根據三角函數的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數的圖像,考查了導數與函數單調性的關系以及導數的幾何意義,屬于中檔題.4、B【解析】
設,根據復數的幾何意義得到、的關系式,即可得解;【詳解】解:設∵,∴,解得.故選:B【點睛】本題考查復數的幾何意義的應用,屬于基礎題.5、B【解析】
把和代入再由復數代數形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數,所以,解得.【點睛】本題考查復數的概念,考查運算求解能力.6、B【解析】
求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.7、B【解析】
根據三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關鍵,屬于基礎題.8、A【解析】
直接將兩邊同時乘以求出復數,再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數的運算及其模的求法,是基礎題.9、B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結果,故選:B.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.10、A【解析】
根據等差數列和等比數列公式直接計算得到答案.【詳解】由成等比數列得,即,已知,解得.故選:.【點睛】本題考查了等差數列,等比數列的基本量的計算,意在考查學生的計算能力.11、A【解析】
計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎題.12、C【解析】
試題分析:將參數a與變量x分離,將不等式恒成立問題轉化為求函數最值問題,即可得到結論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應用點評:本題綜合考查了不等式的應用、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數求出相應的數值,比較大小得到目標函數最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規(guī)劃的線性目標函數的最優(yōu)解問題.線性目標函數的最優(yōu)解一般在平面區(qū)域的頂點或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數求出相應的數值,從而確定目標函數的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.14、.【解析】
由A,B,C成等差數列得出B=60°,利用正弦定理得進而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數列的性質,三角形的面積公式,考查正弦定理的應用,屬于基礎題.15、【解析】
分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應的走法種數,然后利用分步乘法計數原理可得出結果.【詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數原理可知,共有種不同的走法.故答案為:.【點睛】本題考查格點問題的處理,考查分步乘法計數原理和組合計數原理的應用,屬于中等題.16、【解析】
根據與相似,,過作于,利用體積公式求解OP最值,根據勾股定理得出,,利用函數單調性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內的動點,且滿足,又,∴與相似∴,即,過作于,設,,∴,化簡得:,,根據函數單調性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數單調性的綜合應用,難度一般.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①可能是2件;②詳見解析【解析】
(1)由一件手工藝品質量為B級的情形,并結合相互獨立事件的概率公式,列式計算即可;(2)①先求得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數,進而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數;②分別求出一件手工藝品質量為A、B、C、D級的概率,進而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質量為B級的概率為.(2)①由題意可得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數不存在,由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質量為A級的概率為,一件手工藝品質量為B級的概率為,一件手工藝品質量為C級的概率為,一件手工藝品質量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點睛】本題考查相互獨立事件的概率計算,考查離散型隨機變量的分布列及數學期望,考查學生的計算求解能力,屬于中檔題.18、(1);(2)【解析】
(1)利用正弦定理,轉化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.19、(1);(2)【解析】
(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進而可得,由,可求出的值,設邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因為,所以,所以,展開得,整理得.因為,所以,故,即.(2)由余弦定理得,則,得,故,故的面積為.設邊上的高為,有,故,所以邊上的高為.【點睛】本題考查正弦、余弦定理在解三角形中的應用,考查三角形的面積公式的應用,考查學生的計算求解能力,屬于中檔題.20、(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數中有9個1,9個-1.令.一方面,由于這18個數中有9個1,9個-1,從而①,另一方面,表示數表中所有元素之積(記這81個實數之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時占用土地租賃協議
- 快件賒銷協議書
- 2024建設工程補充合同范本
- 求職意向書樣本-書信范本
- 2024幼兒園保安聘用合同
- 勞務施工安全協議書范本2024年
- 浙江省初中名校七年級上學期語文期中試卷5套【附答案】
- 吉林省雜糧采購合同
- 4.1 夯實法治基礎 (大單元教學設計) 2024-2025學年統(tǒng)編版道德與法治九年級上冊
- 家庭雇傭保姆合同模板
- 煤礦皮帶智能化集控系統(tǒng)PPT教學講授課件
- 個人財務管理系統(tǒng)的設計與實現--論文
- 分數乘除法整理復習(課堂PPT)
- 杭州會展業(yè)發(fā)展與對策研究文獻綜述
- 小學六年級英語上冊《Unit 1 How can I get there》教案
- 完整版方法驗證報告模板最終
- 電力管道資料表格(共30頁)
- 大班科學活動教案《豆豆家族》含PPT課件
- 【精品試卷】部編人教版(統(tǒng)編)一年級上冊語文第一單元測試卷含答案
- 金屬有機化學ppt課件
- 數學說題稿(共4頁)
評論
0/150
提交評論