版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年河北省鹿泉一中、元氏一中、正定一中等五校高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)z滿足,則在復(fù)平面上對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.3.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.24.如圖所示,為了測(cè)量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達(dá)處,此時(shí)測(cè)得在的北偏西的方向上,再開回處,由向西開百海里到達(dá)處,測(cè)得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.5.若實(shí)數(shù)滿足不等式組則的最小值等于()A. B. C. D.6.已知雙曲線的焦距為,過左焦點(diǎn)作斜率為1的直線交雙曲線的右支于點(diǎn),若線段的中點(diǎn)在圓上,則該雙曲線的離心率為()A. B. C. D.7.函數(shù)圖像可能是()A. B. C. D.8.設(shè)點(diǎn),,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件9.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.10.已知雙曲線()的漸近線方程為,則()A. B. C. D.11.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.12.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)二、填空題:本題共4小題,每小題5分,共20分。13.記為等比數(shù)列的前n項(xiàng)和,已知,,則_______.14.某中學(xué)舉行了一次消防知識(shí)競(jìng)賽,將參賽學(xué)生的成績(jī)進(jìn)行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績(jī)?cè)趨^(qū)間的學(xué)生人數(shù)是__________.15.如圖,在三棱錐中,平面,,已知,,則當(dāng)最大時(shí),三棱錐的體積為__________.16.函數(shù)過定點(diǎn)________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.18.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.20.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.21.(12分)設(shè)為實(shí)數(shù),已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實(shí)數(shù),若不等式對(duì)任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個(gè)相異的零點(diǎn),求的取值范圍.22.(10分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域.(2)設(shè)函數(shù),若,且的最小值為,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
設(shè),由得:,由復(fù)數(shù)相等可得的值,進(jìn)而求出,即可得解.【詳解】設(shè),由得:,即,由復(fù)數(shù)相等可得:,解之得:,則,所以,在復(fù)平面對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,在第一象限.故選:A.【點(diǎn)睛】本題考查共軛復(fù)數(shù)的求法,考查對(duì)復(fù)數(shù)相等的理解,考查復(fù)數(shù)在復(fù)平面對(duì)應(yīng)的點(diǎn),考查運(yùn)算能力,屬于??碱}.2、B【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時(shí),檢驗(yàn)可得,A、C、D都不正確,故選:B.【點(diǎn)睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).3、B【解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【詳解】因?yàn)?,所以,所以,所以,故選:B【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.4、B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長(zhǎng)度,再根據(jù)正弦定理計(jì)算出的長(zhǎng)度,最后利用余弦定理求解出的長(zhǎng)度即可.【詳解】由題意可知:,所以,,所以,所以,又因?yàn)?,所以,所?故選:B.【點(diǎn)睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.5、A【解析】
首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實(shí)數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點(diǎn)時(shí)直線在上截距最小,所以.故選:A.【點(diǎn)睛】本題考查了簡(jiǎn)單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.6、C【解析】
設(shè)線段的中點(diǎn)為,判斷出點(diǎn)的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點(diǎn)為,由于直線的斜率是,而圓,所以.由于是線段的中點(diǎn),所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點(diǎn)睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.7、D【解析】
先判斷函數(shù)的奇偶性可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來(lái)越小,趨近于0時(shí),,所以函數(shù),故排除選項(xiàng)B,故選:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,識(shí)別函數(shù)的圖象,屬于中檔題.8、C【解析】
利用向量垂直的表示、向量數(shù)量積的運(yùn)算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點(diǎn),,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.9、D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)椋?,?jīng)驗(yàn)證不滿足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.10、A【解析】
根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.11、C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因?yàn)榍胰庵鶠橹比庵?,∴∴面,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.12、C【解析】
先化簡(jiǎn)N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因?yàn)镹={x|x(x+3)≤0}={x|-3≤x≤0},又因?yàn)镸={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)等比數(shù)列的公比為,將已知條件等式轉(zhuǎn)化為關(guān)系式,求解即可.【詳解】設(shè)等比數(shù)列的公比為,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)的基本量運(yùn)算,屬于基礎(chǔ)題.14、30【解析】
根據(jù)頻率直方圖中數(shù)據(jù)先計(jì)算樣本容量,再計(jì)算成績(jī)?cè)?0~100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績(jī)?cè)?0~100分的頻率是,則成績(jī)?cè)趨^(qū)間的學(xué)生人數(shù)是.故答案為:30【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生綜合分析,數(shù)據(jù)處理,數(shù)形運(yùn)算的能力,屬于基礎(chǔ)題.15、4【解析】設(shè),則,,,,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.,故答案為416、【解析】
令,,與參數(shù)無(wú)關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無(wú)關(guān),所有過定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無(wú)關(guān),熟記常見函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識(shí)證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因?yàn)锳B⊥AD,,所以.又因?yàn)槠矫鍭BC,平面ABC,所以EF∥平面ABC.(2)因?yàn)槠矫鍭BD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因?yàn)槠矫妫?又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因?yàn)锳C平面ABC,所以AD⊥AC.點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)把代入,可得,令,求出其在上的值域,利用對(duì)數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,此時(shí)函數(shù)的定義域?yàn)?因?yàn)楹瘮?shù)的最小值為.最大值為,故函數(shù)在上的值域?yàn)?;(Ⅱ)因?yàn)楹瘮?shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實(shí)數(shù)的取值范圍.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)的單調(diào)性求值域、利用對(duì)數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.19、(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點(diǎn)分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實(shí)數(shù)a的取值范圍為試題解析:(I)當(dāng)時(shí),化為,當(dāng)時(shí),不等式化為,無(wú)解;當(dāng)時(shí),不等式化為,解得;當(dāng)時(shí),不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個(gè)頂點(diǎn)分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為20、(1)2;(2)【解析】分析:(1)將轉(zhuǎn)化為分段函數(shù),求函數(shù)的最小值(2)分離參數(shù),利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,即.(Ⅱ)因?yàn)楹愠闪ⅲ院愠闪?,?dāng)且僅當(dāng)時(shí),取得最小值,所以,即實(shí)數(shù)的最大值為.點(diǎn)睛:本題主要考查含兩個(gè)絕對(duì)值的函數(shù)的最值和不等式的應(yīng)用,第二問恒成立問題分離參數(shù),利用基本不等式求解很關(guān)鍵,屬于中檔題.21、(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】
(1)據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;(2)分離參數(shù),可得對(duì)任意的及任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性以及最值得關(guān)系即可求出的范圍【詳解】解:(1)當(dāng)時(shí),因?yàn)?當(dāng)時(shí),;當(dāng)時(shí),.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對(duì)任意的及任意的恒成立,由于,所以,所以對(duì)任意的恒成立,設(shè),,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時(shí),則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個(gè)零點(diǎn),不合題意;②若時(shí),令,得.由第(2)小題,知:當(dāng)時(shí),,所以,所以,所以當(dāng)時(shí),函數(shù)的值域?yàn)椋?存在,使得,即,①且當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因?yàn)楹瘮?shù)有兩個(gè)零點(diǎn),,所以.②設(shè),,則,所以函數(shù)在單調(diào)遞增,由于,所以當(dāng)時(shí),.所以,②式中的,又由①式,得.由第(1)小題可知,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以,即.當(dāng)時(shí),(?。┯捎?所以得,又因?yàn)?且函數(shù)在上單調(diào)遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個(gè)零點(diǎn);(ⅱ)由于,令,設(shè),,由于時(shí),,,所以設(shè),即.由①式,得,當(dāng)時(shí),,且,同理可得函數(shù)在上也恰有一個(gè)零點(diǎn).綜上,.【點(diǎn)睛】本題考查含參數(shù)的導(dǎo)數(shù)的單調(diào)性,利用導(dǎo)數(shù)求不等式恒成立問題,以及考查函數(shù)零點(diǎn)問題,考查學(xué)生的計(jì)算能力,是綜合性較強(qiáng)的題.22、(1);(2).【解析】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度醫(yī)療設(shè)備研發(fā)與應(yīng)用合同3篇
- 二零二五版私募股權(quán)投資基金股權(quán)收購(gòu)合同2篇
- 二零二五版企業(yè)股權(quán)激勵(lì)項(xiàng)目執(zhí)行與改進(jìn)合同2篇
- 二零二五年度房產(chǎn)投資分期付款合同模板3篇
- 二零二五年蔬菜種子進(jìn)口合同2篇
- 二零二五年度酒樓市場(chǎng)拓展與股權(quán)激勵(lì)方案合同2篇
- 二零二五年模具生產(chǎn)項(xiàng)目質(zhì)量保證合同3篇
- 二零二五版智能家居貨款擔(dān)保合同范本3篇
- 二零二五年船舶抵押借款合同范本修訂版3篇
- 二零二五年戶外活動(dòng)用安全護(hù)欄租賃合同3篇
- 2024年江蘇護(hù)理職業(yè)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 分割不動(dòng)產(chǎn)的協(xié)議書(2篇)
- 菏澤2024年山東菏澤市中心血站招聘15人筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解版
- 供熱通風(fēng)與空調(diào)工程施工企業(yè)生產(chǎn)安全事故隱患排查治理體系實(shí)施指南
- 精-品解析:廣東省深圳市羅湖區(qū)2023-2024學(xué)年高一上學(xué)期期末考試化學(xué)試題(解析版)
- 記賬實(shí)操-基金管理公司的會(huì)計(jì)處理分錄示例
- 中國(guó)慢性便秘診治指南
- 兒童流感診療及預(yù)防指南(2024醫(yī)生版)
- 沐足行業(yè)嚴(yán)禁黃賭毒承諾書
- 2025年蛇年紅色喜慶中國(guó)風(fēng)春節(jié)傳統(tǒng)節(jié)日介紹
- 河北省承德市2023-2024學(xué)年高一上學(xué)期期末物理試卷(含答案)
評(píng)論
0/150
提交評(píng)論