版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東棗莊八中高考數(shù)學五模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知底面為邊長為的正方形,側棱長為的直四棱柱中,是上底面上的動點.給出以下四個結論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.2.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.3.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1284.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.5.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關系,它在復變函數(shù)論里非常重要,被譽為“數(shù)學中的天橋”.根據(jù)歐拉公式可知,表示的復數(shù)位于復平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤超過400萬元7.記單調遞增的等比數(shù)列的前項和為,若,,則()A. B. C. D.8.在正項等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.89.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.210.若復數(shù)滿足,則()A. B. C.2 D.11.已知集合,,則集合的真子集的個數(shù)是()A.8 B.7 C.4 D.312.如圖,在三棱柱中,底面為正三角形,側棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知a,b均為正數(shù),且,的最小值為________.14.已知函數(shù),則曲線在處的切線斜率為________.15.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.16.的角所對的邊分別為,且,,若,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.18.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.19.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.20.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設,,,且滿足.(1)求;(2)若,,求的最大值.22.(10分)在中,設、、分別為角、、的對邊,記的面積為,且.(1)求角的大??;(2)若,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.【點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.2、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.3、C【解析】
根據(jù)給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、D【解析】
依次將選項中的代入,結合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調性,涉及到誘導公式的應用,是一道容易題.5、A【解析】
計算,得到答案.【詳解】根據(jù)題意,故,表示的復數(shù)在第一象限.故選:.【點睛】本題考查了復數(shù)的計算,意在考查學生的計算能力和理解能力.6、D【解析】
直接根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應用能力.7、C【解析】
先利用等比數(shù)列的性質得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進而得到數(shù)列的通項和前項和,根據(jù)后兩個公式可得正確的選項.【詳解】因為為等比數(shù)列,所以,故即,由可得或,因為為遞增數(shù)列,故符合.此時,所以或(舍,因為為遞增數(shù)列).故,.故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.8、B【解析】
根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數(shù)列的計算,意在考查學生的計算能力.9、A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.10、D【解析】
把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法.11、D【解析】
轉化條件得,利用元素個數(shù)為n的集合真子集個數(shù)為個即可得解.【詳解】由題意得,,集合的真子集的個數(shù)為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數(shù)問題,屬于基礎題.12、B【解析】
建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.14、【解析】
求導后代入可構造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點睛】本題考查切線斜率的求解問題,考查導數(shù)的幾何意義,屬于基礎題.15、【解析】
設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數(shù)在單調遞增;令,即,解得,此函數(shù)在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.16、【解析】
先利用余弦定理求出,再用正弦定理求出并把轉化為與邊有關的等式,結合可求的值.【詳解】因為,故,因為,所以.由正弦定理可得三角形外接圓的半徑滿足,所以即.因為,解得或(舍).故答案為:.【點睛】本題考查正弦定理、余弦定理在解三角形中的應用,注意結合求解目標對所得的方程組變形整合后整體求解,本題屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)坐標和為等邊三角形可得,進而得到橢圓方程;(2)①當直線斜率不存在時,易求坐標,從而得到所求面積;②當直線的斜率存在時,設方程為,與橢圓方程聯(lián)立得到韋達定理的形式,并確定的取值范圍;利用,代入韋達定理的結論可求得關于的表達式,采用換元法將問題轉化為,的值域的求解問題,結合函數(shù)單調性可求得值域;結合兩種情況的結論可得最終結果.【詳解】(1),,為等邊三角形,,橢圓的標準方程為.(2)設四邊形的面積為.①當直線的斜率不存在時,可得,,.②當直線的斜率存在時,設直線的方程為,設,,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內單調遞減,.綜上所述:四邊形面積的取值范圍是.【點睛】本題考查直線與橢圓的綜合應用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關鍵是能夠將所求面積表示為關于某一變量的函數(shù),將問題轉化為函數(shù)值域的求解問題.18、,;當時,棧道總長度最短.【解析】
連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據(jù)求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優(yōu)弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調遞減極小值單調遞增故時,所以當時,棧道總長度最短.【點睛】本題主要考查導數(shù)在函數(shù)當中的應用,屬于中檔題.19、(1);(2)①證明見解析;②證明見解析【解析】
(1)解方程即可;(2)①設直線,,,將點的坐標用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標準方程為:(2)①,,設直線代入橢圓方程:設,,,直線,直線,,,,,.②,所以.【點睛】本題考查了直接法求橢圓的標準方程、直線與橢圓位置關系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關系,本題思路簡單,但計算量比較大,是一道有一定難度的題.20、(1)見解析;(2).【解析】
(1)利用中位線的性質得出,然后利用線面平行的判定定理可證明出平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因為、分別為、的中點,所以.又因為平面,平面,所以平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,則,,,,,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境衛(wèi)生保安工作總結
- 印刷品包裝質量檢測技術
- 2024年設備監(jiān)理師考試題庫附答案(奪分金卷)
- 2024年設備監(jiān)理師考試題庫帶答案ab卷 (一)
- 《高級財務會計》復習大綱
- 分布式能源系統(tǒng)合作開發(fā)合同(2篇)
- 通關08 跨學科主題專練(解析版)
- 第4單元 經(jīng)濟大危機和第二次世界大戰(zhàn)(B卷·能力提升練)(解析版)
- 2025聘用勞動合同標準版
- 2024年度天津市公共營養(yǎng)師之三級營養(yǎng)師能力測試試卷B卷附答案
- 西安信息職業(yè)大學《工程管理導論》2023-2024學年第一學期期末試卷
- CNC技理考(含答案)
- 電氣領域知識培訓課件
- 金融產品分類介紹
- 2024-2025學年上學期深圳初中語文七年級期末模擬卷2
- 河南省鄭州市2024-2025學年高一數(shù)學上學期期末考試試題含解析
- BOSS GT-6效果處理器中文說明書
- 浙江省杭州市拱墅區(qū)2023-2024學年六年級(上)期末數(shù)學試卷
- 2024廣東煙草專賣局校園招聘筆試管理單位遴選500模擬題附帶答案詳解
- 2024房地產合同更名申請表
- 病例報告表(樣板)
評論
0/150
提交評論