高中數(shù)學第三章不等式3.4.1二元一次不等式(組)與平面區(qū)域省公開課一等獎新名師獲獎?wù)n件_第1頁
高中數(shù)學第三章不等式3.4.1二元一次不等式(組)與平面區(qū)域省公開課一等獎新名師獲獎?wù)n件_第2頁
高中數(shù)學第三章不等式3.4.1二元一次不等式(組)與平面區(qū)域省公開課一等獎新名師獲獎?wù)n件_第3頁
高中數(shù)學第三章不等式3.4.1二元一次不等式(組)與平面區(qū)域省公開課一等獎新名師獲獎?wù)n件_第4頁
高中數(shù)學第三章不等式3.4.1二元一次不等式(組)與平面區(qū)域省公開課一等獎新名師獲獎?wù)n件_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

§4

簡單線性規(guī)劃1/334.1

二元一次不等式(組)與平面區(qū)域2/333/331.二元一次不等式表示平面區(qū)域(1)直線與坐標平面普通地,直線l:ax+by+c=0把直角坐標平面分成了三個部分:①直線l上點(x,y)坐標滿足ax+by+c=0;②直線l一側(cè)平面區(qū)域內(nèi)點(x,y)坐標滿足ax+by+c>0;③直線l另一側(cè)平面區(qū)域內(nèi)點(x,y)坐標滿足ax+by+c<0.(2)二元一次不等式表示平面區(qū)域普通地,在平面直角坐標系中,二元一次不等式ax+by+c>0表示直線ax+by+c=0某一側(cè)全部點組成平面區(qū)域,我們把直線畫成虛線,以表示區(qū)域不包含邊界.不等式ax+by+c≥0表示平面區(qū)域包含邊界,把邊界畫成實線.4/33【做一做1】已知點P(x0,y0)和點A(1,2)在直線l:3x+2y-8=0異側(cè),則(

)

A.3x0+2y0>0 B.3x0+2y0<0C.3x0+2y0<8 D.3x0+2y0>8解析:因為3×1+2×2-8=-1<0,點P與點A在直線l異側(cè),所以3x0+2y0-8>0,即3x0+2y0>8.故選D.答案:D5/332.二元一次不等式組表示平面區(qū)域二元一次不等式組解集是各個不等式解集交集.我們知道每一個二元一次不等式都表示平面上一個區(qū)域,因而二元一次不等式組所表示平面區(qū)域是各個不等式所表示平面區(qū)域公共部分.6/33思索辨析判斷以下說法是否正確,正確在后面括號內(nèi)打“√”,錯誤打“×”.(1)每個二元一次不等式組都能表示平面上一個區(qū)域.(

)(2)點(0,0)和點(1,2)分布在直線x+y+1=0兩側(cè).(

)(3)若A<0,則Ax+By+C<0表示平面區(qū)域恰好在直線Ax+By+C=0右方.(

)答案:(1)×

(2)×

(3)√7/33探究一探究二探究三探究四思維辨析【例1】

畫出以下二元一次不等式表示平面區(qū)域:(1)x-2y+4≥0;(2)3x+2y-6<0;(3)y>2x;(4)3x+2y<0.分析:按照畫二元一次不等式表示平面區(qū)域步驟進行.8/33探究一探究二探究三探究四思維辨析解:(1)先畫出直線x-2y+4=0(畫成實線).取點(0,0),代入x-2y+4,得0-2×0+4=4>0,所以x-2y+4≥0表示平面區(qū)域為圖中陰影部分.(2)先畫出直線3x+2y-6=0(畫成虛線),取點(0,0),代入3x+2y-6,得0+0-6<0,所以3x+2y-6<0表示平面區(qū)域為圖中陰影部分.9/33探究一探究二探究三探究四思維辨析(4)先畫直線3x+2y=0(畫成虛線),取點(1,0),代入3x+2y,得3×1+2×0=3>0,所以不等式3x+2y<0表示平面區(qū)域為圖中陰影部分.(3)先畫出直線2x-y=0(畫成虛線),取點(1,0),代入2x-y,得2×1-0=2>0,所以y>2x表示平面區(qū)域為圖中陰影部分.10/33探究一探究二探究三探究四思維辨析反思感悟畫二元一次不等式Ax+By+C>0(≥0,<0,≤0)表示平面區(qū)域步驟:(1)在平面直角坐標系中畫出直線Ax+By+C=0,即邊界;(2)利用特殊點確定二元一次不等式Ax+By+C>0(≥0,<0,≤0)表示平面區(qū)域是直線Ax+By+C=0哪一側(cè);(3)用陰影表示平面區(qū)域.注意:對于二元一次不等式Ax+By+C≥0和Ax+By+C≤0,把邊界畫成實線;對于二元一次不等式Ax+By+C>0和Ax+By+C<0,把邊界畫成虛線.11/33探究一探究二探究三探究四思維辨析變式訓練1

不等式x-y+1≥0表示平面區(qū)域是

(

)

解析:先畫出直線x-y+1=0(畫成實線),即可排除A,C選項,將點(0,0)代入不等式,得1≥0成立,排除D選項.故選B.答案:B12/33探究一探究二探究三探究四思維辨析【例2】

畫出以下不等式組表示平面區(qū)域.分析:不等式組表示平面區(qū)域是每個不等式表示平面區(qū)域公共部分.13/33探究一探究二探究三探究四思維辨析將(1,0)分別代入①②③左邊,知不等式①表示平面區(qū)域在直線x-y=0右下方,不等式②表示平面區(qū)域在直線x+2y-4=0左下方,不等式③表示平面區(qū)域在直線y+2=0上方.故不等式組表示平面區(qū)域如圖甲中三角形陰影部分(不包含邊界).14/33探究一探究二探究三探究四思維辨析(2)不等式x-y+5≥0表示直線x-y+5=0上及右下方點集合;x+y+1≥0表示直線x+y+1=0上及右上方點集合;x≤3表示直線x=3上及左方點集合,所以不等式組表示平面區(qū)域如圖乙中三角形陰影部分(包含邊界).15/33探究一探究二探究三探究四思維辨析反思感悟1.畫二元一次不等式組所表示平面區(qū)域時,應(yīng)先畫出每個不等式表示平面區(qū)域,再取它們公共部分即可.其步驟可概括為:①畫線;②定側(cè);③求“交”;④表示.2.在畫二元一次不等式組表示平面區(qū)域時,假如不等式組中不等式不是標準形式,那么可先將其轉(zhuǎn)化為標準形式(即不等號右側(cè)為0),再畫平面區(qū)域.16/33探究一探究二探究三探究四思維辨析變式訓練2

能表示圖中陰影部分區(qū)域二元一次不等式組為(

)解析:取原點O(0,0)檢驗滿足x+y-1≤0,所以異側(cè)點應(yīng)為x+y-1≥0排除B,D,點O滿足x-2y+2≥0,排除C.故選A.答案:A17/33探究一探究二探究三探究四思維辨析分析:先依據(jù)二元一次不等式組畫出平面區(qū)域,再依據(jù)平面區(qū)域圖形特點求其面積.解:不等式x-y+6≥0表示直線x-y+6=0上及右下方點集合;x+y≥0表示直線x+y=0上及右上方點集合;x≤3表示直線x=3上及左方點集合.18/33探究一探究二探究三探究四思維辨析19/33探究一探究二探究三探究四思維辨析反思感悟處理平面區(qū)域面積問題普通步驟是:(1)畫出不等式組表示平面區(qū)域;(2)判斷平面區(qū)域圖形形狀,并求得直線交點坐標、圖形邊長、相關(guān)線段長(三角形高、四邊形高)等,利用圖形面積公式求解;(3)若圖形是不規(guī)則,可采取分割方法,將平面區(qū)域分為幾個規(guī)則圖形后求解.20/33探究一探究二探究三探究四思維辨析變式訓練3

解析:畫出不等式組表示平面區(qū)域如圖,易求得A(-2,2),B(a,a+4),C(a,-a).S△ABC=|BC|·|a+2|=(a+2)2=9,由題意得a=1.答案:D21/33探究一探究二探究三探究四思維辨析【例4】

投資生產(chǎn)A產(chǎn)品時,每生產(chǎn)100噸需要資金200萬元,需場地200平方米;投資生產(chǎn)B產(chǎn)品時,每生產(chǎn)100噸需要資金300萬元,需場地100平方米.現(xiàn)某單位有可使用資金1400萬元,場地900平方米,用數(shù)學關(guān)系式和圖形表示上述要求.分析:首先將已知數(shù)據(jù)列成表,以下表:然后依據(jù)此表設(shè)未知數(shù),列出限制條件,最終作圖即可.22/33探究一探究二探究三探究四思維辨析解:設(shè)生產(chǎn)A產(chǎn)品x百噸,生產(chǎn)B產(chǎn)品y百噸,用圖形表示以上限制條件,得其表示平面區(qū)域如圖(陰影部分).23/33探究一探究二探究三探究四思維辨析反思感悟1.用二元一次不等式組表示實際問題步驟:(1)依據(jù)問題需要,選取具相關(guān)鍵作用兩個量,用字母表示;(2)把問題中全部量都用這兩個字母表示出來;(3)由實際問題中限制條件以及全部量實際意義寫出全部不等式,結(jié)構(gòu)不等式組;(4)畫出上述不等式組對應(yīng)平面區(qū)域.2.對于本例,依據(jù)所設(shè)未知量實際意義,千萬不要遺漏x≥0,y≥0這一限制條件.24/33探究一探究二探究三探究四思維辨析

變式訓練4

預算用2000元購置單價為50元鍵盤和20元鼠標,鼠標數(shù)不能少于鍵盤數(shù),但不多于鍵盤數(shù)1.5倍,問鍵盤數(shù)、鼠標數(shù)應(yīng)滿足什么條件,并在平面直角坐標系中畫出對應(yīng)區(qū)域.

解:設(shè)買x個鍵盤,y個鼠標,則x,y滿足條件是

對應(yīng)平面區(qū)域如圖,故陰影部分中全部整數(shù)點集合即為所求區(qū)域.25/33探究一探究二探究三探究四思維辨析忽略題意中隱含條件而致誤【典例】

設(shè)集合A={(x,y)|x,y,1-x-y表示三角形三條邊長},則A所表示平面區(qū)域(不含邊界陰影部分)是(

)錯解因為x,y,1-x-y是三角形三邊長,26/33探究一探究二探究三探究四思維辨析

糾錯心得本題錯誤原因是忽略題目中隱含條件,實際上,x,y,1-x-y除了都滿足大于0之外,還有任意兩邊之和大于第三邊這一條件,所以在處理與三角形邊相關(guān)問題時,不要遺漏此隱含條件.27/33探究一探究二探究三探究四思維辨析變式訓練

在平面直角坐標系中,不等式x2-y2>0表示平面區(qū)域是(

)

答案:B28/3312345解析:當x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論